

TRANSFORMATION OF TH E

UNIVERSITY EXAMINATI ON

TIMETABLING

PROBLEM SPACE

THROUGH

DATA PRE -PROCESSING

SITI KHATIJAH NOR ABDUL RAHIM , BSc., MSc.

Thesis submitted to The Univers ity of Nottingham

for the degree of Doctor of Philosophy

2015

ii

Abstract

This research investigates Examination Timetabling or Scheduling , with the

aim of producing good quality, feasible timetables that satisfy hard

constraints and various soft constraints. A novel approach to scheduling , that

of transformation of the problem space, has been developed and evaluated for

its effectiveness.

The examination scheduling problem involves many constraints due to many

relationships betw een students and exams, making it complex and expensive

in terms of time and resources. Despite the extensive research in this area, it

has been observed that most of the published methods do not produce good

quality timetables consistently due to the util isation of random -search. In

this research we have avoided random -search and instead have proposed a

systematic, deterministic approach to solving the examination scheduling

problem . We pre-process data and constraints to generate more meaningful

aggregated data constructs with better expressive power that minimise the

need for cross-referencing original student and exam data at a later stage.

Using such aggregated data and custom -designed mechanisms, the timetable

construction is done systematically, while assuring its feasibility. Later, the

timetable is optimized to improve the quality, focusing on maximizing the

gap between consecutive exams. Our solution is always reproducible and

displays a deterministic optimization pattern on all benchmark datasets.

Transformation of the problem space into new aggregated data constructs

through pre -processing represents the key novel contribution of this

research.

iii

Publications / Disseminations

during PhD period

Papers Published / Presented:

Rahim, S. K. N. A., Bargie la, A., & Qu, R. 2009. Granular Modelling Of Exam

To Slot Allocation. ECMS 2009 Proceedings edited by J. Otamendi, A.

Bargiela, J. L. Montes, L. M. Doncel Pedrera (pp. 861 -866). European

Council for Modelling and Simulation. (doi:10.7148/2009 -0861-0866).

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2012. Deterministic Optimization

of Examination Timetables. In 25th European Conference on Operational

Research, EURO 2012, Session WC-14, p.220-221, Vilnius, Lithuania, July

2012.

Rahim, S. K. N. A., Bargiela, A ., & Qu, R. 2013. Hill Climbing Versus Genetic

Algorithm Optimization in Solving the Examination Timetabling Problem.

 2nd International. Conference On Operations Research and Enterprise

Systems, ICORES 2013, Barcelona, Spain, 16 -18 February 2013.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2013. Domain Transformation

Approach to Deterministic Optimization of Examination Timetables,

Artificial Intelligence Research (AIR) Journal. Sciedu Press. 2(1), 2013.

(doi:10.5430/air.v2n1p122).

Rahim, S. K. N. A., Bar giela, A., & Qu, R. 2013. Analysis of Backtracking in

University Examination Scheduling. In proceeding of: 27th European

Conference on Modelling and Simulation, ECMS2013, At Aalesund,

Norway. doi: (10.7148/2013 -0782)

 Rahim, S. K. N. A., Bargiela, A., & Q u, R. 2013. A Study on the Effectiveness

of Genetic Algorithm and Identifying the Best Parameters Range for Slots

Swapping in the Examination Scheduling. International Symposium on

Mathematical Sciences and Computing Research, iSMSC 2013. Ipoh,

Malaysia.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. The Incorporation of Late

Acceptance Hill Climbing Strategy in the Deterministic Optimization of

Examination Scheduling Framework: A Comparison with the Traditional

Hill Climbing. 2014 IEEE Conference on Systems, Process and Control

(ICSPC 2014), 12 - 14 December 2014, Kuala Lumpur, Malaysia.

iv

Acknowledgement

I would like to take this opportunity to personally thank a number of people

for their help and support during my PhD study. First and foremost, I would

l ike to express my profound gratefulness and deep honours to my first

supervisor, Professor Andrzej Bargiela for his constant guidance, support,

help, encouragement, and constructive comments throughout this study. I

really appreciate his dedicated commitme nt s and professionalism in

supervising my research study.

Also, I would like to express my gratitude to Dr Rong Qu, my second

supervisor , for all the positive, constructive and detailed comments in my

work that she has always given to me despite her busy schedule and

commitment s.

I would also like to thank the Ministry of Higher Education (MOHE) of

Malaysia and the Universiti Teknologi MARA (UiTM) for the doctoral

scholarship and other financial support throughout the course of this study.

My thanks also g o to my wonderful friends and staffs at the University of

Nottingham Malaysia Campus and University Teknologi MARA (UiTM) for

their advice, support, and friendship .

A special thanks to my lovely husband Amir Hamzah Jaafar for his great

support, patience, u nderstanding and unconditional love . Finally , thank you

very much to my both mother and mother -in -law, my dau ghters, my bro ther

and sisters , the entire family and friends for their support, love and prayers.

v

Table of Contents

Abstract ii

Publica tions and Disseminations During PhD Period iii

Acknowledgements iv

List of Tables ix

List of Figures xi

1- CHAPTER 1 .. 1

1.1 Introduction ... 1

1.2 Scope and Objective ... 7

1.3 Research Contributions ... 8

1.4 Thesis Overview ...10

2- CHAPTER 2 ...12

2.1 Background of the Scheduling Research ...12

2.1.1 Definition of Scheduling According to the Scheduling Literature 13

2.1.2 Constraints in the Examination Scheduling Problems 15

2.2 Reviews of Various Surveys in the Scheduling Literature 17

2.3 Summary of Algorithmic Techniques in the Scheduling Literature .20

2.4 Benchmark Examination Scheduling Datasets 28

2.4.1 University of Toronto Dataset ...30

2.4.2 University of Nottingham Dataset ..31

2.4.3 International Timetabling Competition 2007 (ITC2007) Dataset 32

2.5 Widely Used Ordering Strategies ..33

2.6 Widely -Used Evaluation Function: Carter Evaluation Function 34

2.7 Performance of Metho ds Proposed in the Examination Scheduling

Literature ...35

2.8 Pre-Processing Approach in the Examination Timetabling 38

2.9 Import ant Insights from the Scheduling Literature and Motivations

for the Research ..42

vi

3- CHAPTER 3 ...46

3.1 Domain Transformation Approa ch ð Overview 46

3.2 The Flow of the Proposed Approach ..52

3.2.1 Standardization and Verification of the Problem Description

Data 54

3.2.2 Pre-processing .. 63

Generation of the Exam Conflict Matrix ... 64

Generation of the Conflict Chains ... 65

Generation of the Spread Matrix ... 73

3.2.3 Scheduling .. 75

3.2.3.1 Scheduling for Uncapacitated Problems 76

Effects of Pre -Ordering Exams on Scheduling 80

Implementations of Backtracking to Reduce the Number of Slots 87

Types of Backtracking Implemented in the Proposed Framework 98

Differences between Carterõs Backtracking and the Proposed

Backtracking ... 99

3.2.4 Optimization ... 104

3.2.4.1 Minimization of Tota l Slot Conflicts 107

3.2.4.2 Minimization of Costs via Permutations of Exam Slots ... 112

Method 1 ... 114

Method 2 ... 114

Greedy Hill Climbing .. 115

Late Acceptance Hill Climbing ... 118

3.2.4.3 Minimization of Costs via Reassignments of Exams 122

3.3 Mathematical Formulation Based on the Proposed Approach 126

3.4 Recap of the Proposed Approach .. 127

4- CHAPTER 4 ... 128

4.1 Experiments and Results for Benchmark Datasets 128

vii

4.1.1 Pre-processed Data ... 129

Exam Conflict Matrix ... 129

Conflict Chains ... 130

Spread Matrix ... 133

4.1.2 Schedules Generated .. 134

4.1.2.1 Initial Feasible Schedule ... 134

Costs and Number of Slots Generated .. 135

4.1.3 Improved Quality Schedules via Optimization 138

4.1.3.1 Minimization of Total Slot Conflicts 138

4.1.3.2 Cost Reduction via Permutation of exam slots 140

Costs Produced By Method 1 versus Method 2 140

Costs Produced By Greedy Hill Climbing 144

Different Parameters for Permutations of Slots 146

4.1.3.2.1 Costs Produced By Late Acceptance Hill Climbing

(LAHC) 148

4.1.3.3 Cost Reduction via Reassignments of Exams 151

4.1.4 Summary of Results and Graphs Produced For Benchmark

Datasets Using Proposed Approach ... 152

4.1.5 Summary of Results and Graphs for Best Cost Produced For

Benchmark Datasets .. 160

4.1.6 Deterministic Pattern Obtained For All Tested Datasets 165

4.1.7 Comparison of the Proposed Methods Compared to Other

Constructive Methods in the Literature .. 173

5- CHAPTER 5 ... 180

5.1 Substitution of a Global Search Procedure in the Optimization Stage

of the Proposed Framework ... 180

5.1.1 Genetic Algorithm .. 183

5.1.2 Our Genetic Algorithm Implementation 185

5.1.3 Results for Hill Climbing versus Genetic Algorithm

Optimization ... 188

viii

6- CHAPTER 6 ... 214

6.1 Summary of the Research .. 214

6.2 Summary of Results ... 224

6.3 Contributions .. 229

6.4 Future Work ... 233

Bibliographyééééééééééééééééééééééééééé....234

ix

List of Tables

Table 2-2: Primary Soft Constraints in the Examination Scheduling

Problems ... 16

Table 2-3: The Characteristics of University of Toronto Benchmark

Dataset .. 30

Table 2-6: Widely -Used Graph Heuristics in Exam Scheduling 33

Table 2-7: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Constructive Approaches Reported in the Literature 35

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Hyper -Heuristics Approaches Reported in the Literature 36

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Other

Different Improvement Approaches Reported in the Literature 36

Table 2-10: No of Exams to Required No of Slots Ratio 39

Table 3-1: Different Number of Slots Generated After Pre -Processing By

Using Different Pre -Orderings ... 87

Table 4-1: Number of Slots for Nott and Toronto Datasets Before and

After Performing Backtracking .. 137

Table 4-2: Results after Performing the Minimization of Total Slot

Conflicts Procedure on Nott and Toronto Datasets 139

Table 4-3: Cost Functions Before and After Considering the Spread

Information for the Uncapacitated Nott Dataset. 142

Table 4-4: Cost Functions Before and After Considering the Spread

Information for the Capacitated Nott Dataset. 143

Table 4-5: Optimized n umber of starting points and repetitions of the

permutations of exam slots for different benchmark problems. 146

Table 4-6: Results Before and After Performing Permutation of Exam

Slots on Not t and Toronto Datasets ... 148

Table 4-7: Results before and after Performing LAHC Permutations of

Exam Slots on Nott and Toronto Datasets .. 149

x

Table 4-9: Computational Results (Best Cost) of the Proposed Approach

Applied to the Nott and Toronto Dataset .. 161

Table 4-10: The characteristics of the ITC2007 dataset 167

Table 4-11: Computational Results of the Proposed Approach Applied to

the ITC2007 Dataset .. 169

Table 4-12: Results in Terms of Carter cos t (2.1) of Our Method in

Comparison with Some Other .. 176

Table 4-13: Average Percentage Distance to the Optimal Cost for 11

Datasets in the Toronto Problem ... 177

Table 4-14: Average Percentage Distance to the Optimal Cost 178

Table 5-1: Results Obtained Using GA Optimization With Minimization of

Total Slots Conflicts and Group Reassignments on Toronto Benchmark

Problem ... 190

Table 5-2: Comparison of Results Obtained By Using Hill Climbing and

Genetic Algorithm Optimization on Nott and Toronto Datasets 200

Table 5-3: Number of Generations That Could Improve the Schedule Cost

During GA Optimization .. 210

Table 5-4: Final Cost Produced Using HC versus GA Optimization 211

xi

List of Figures

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques ð Various Heuristics (2 005 ð 2014) .. 26

Figure 3.1: Illustration of an Example of a Standard Examination

Scheduling Problem (Fine Resolution Level) ... 50

Fi gure 3.3: The Flow of the Proposed Approach 53

Figure 3.4: Sample of Enrollment Data from the University of Nottingham

Dataset File .. 56

Figure 3.5: Sample of Enrollment Data from the Toronto Dataset File ... 57

Figure 3.6: Sample of Enrollment Data from the ITC2007 Dataset File . 58

Figure 3.7: Algorithm for Retrieving Enrollment Data, Standardization

and Verification .. 62

Figure 3.8: Algorithm to Generate Conflict Chains 66

Figure 3.9: An Example of a representation of Student -Exam List 68

Figure 3.10: Exam -Students List Generated Based on the Student -Exam

List .. 69

Figure 3.11: Exam -Clashes List ... 69

Figure 3.12: Illustration of Exam -Conflict Matrix 70

Figure 3.13: Diagram Illustrating the Slot Allocation Process 71

Figure 3.14: Diagram Illustrating Exams Allocated To Slots 72

Figure 3.15: Conflict Chains Generated .. 72

Figure 3.16: Algorithms for Pre -Processing ... 74

Figure 3.17: Algorithm for Al location of Exams to Time slots 78

Figure 3.18: Algorithm for Allocation of Exams to Time slots 79

Figure 3.19: Figure Illustrat ing Exam E510 Clashes with Exam E66 80

Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre -ordered

Using Ordering 1: Random Ordering (RO) .. 82

Figure 3.21: Slot Allocation Process for Random Ordering (RO) 83

xii

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre -ordered

Using Ordering 2: Largest De gree (LD) ... 84

Figure 3.23: Slot Allocation Process for Largest Degree (LD) 85

Figure 3.24: Backtracking Stage in Our Proposed Fra mework 90

Figure 3.25: Flowchart of Backtracking Process 92

Figure 3.26: Pseudocode for Backtracking .. 94

Figure 3.27: Flowchart for Carterõs Backtracking in General 100

Figure 3.28: Flowchart for our Backtracking in General 101

Figure 3.29: Flowchart for Carter et al. (1996)õs Backtracking in Detail

 .. 103

Figure 3.30: An Example of a Feasible Examination Schedule 105

Figure 3.31: An Example of an Improved Examination Schedule 106

Figure 3.32: Algorithm for Minimization of Total Slot Conflicts 111

Figure 3.33: An Improved Examination Schedule after Optimization

(Permutations of Slots) ... 113

Figure 3.34: Re -ordered Time Slots Via Perm utations of Slots with

Greater Effect ... 113

Figure 3.35: Algorithm for Permutations of Exam Slots Using Greedy Hill

Climbing Strategy .. 117

Figure 3.36: Algorithm for Permutations of Exam Slots Using Late

Acceptance Hill Climbing Strategy .. 120

Figure 3.37: An Improved Examination Schedule after Optimization

(Reassignment of Exam) .. 123

Figure 3.38: Algorithm for Reassigning Exams 125

Figure 4.1: An Example of an Exam Conflict Matrix 129

Figure 4.3: Conflict Chains after Merging ... 132

Figure 4.2: Conflict Chains be fore Merging ... 132

Figure 4.5: allocflag for yorf83 before backtracking 135

Figure 4.6: allocflag for yorf83 after backtracking 140

Figure 4.7: Initial Ordering of the Spread Matrix for the First 6 Slots for

the Nottingham Dataset ... 140

THESIS-SITI%20KHATIJAH%20NOR-UNMC-CORRECTED-2015%20-18th%20APRIL%202015.doc#_Toc419241776
THESIS-SITI%20KHATIJAH%20NOR-UNMC-CORRECTED-2015%20-18th%20APRIL%202015.doc#_Toc419241777

xiii

Figure 4.8: The New Arrangements of the Initial Ordering of the Spread

Matrix after Applying Method 1 .. 141

Figure 4.9: The New Arrangements of the I nitial Ordering of the Spread

Matrix after Applying Method 2 .. 141

Figure 4.11: An Example of a Spread Matrix with 10 Slots after

Performing the Greedy Hill Climbing Procedure 145

Figure 4.12: Graphs for the cost (2.1) versus the Total Slot conflict for all

Datasets .. 155

Figure 4.13: General Pattern of Graphs For All Data sets 156

Figure 4.14: Imitation Graph Created For Explanations 157

Figure 4.15 : Cost (2.1) vs. the Total Slot Conflicts For Not t and Toronto

Dataset .. 164

Figure 4.16 : The Predicted Pattern of the Graph with the Proposed

Approach ... 165

Figure 4.17: Cost (2. 1) vs. the Total Slot Conflicts for ITC2007 Dataset

 .. 172

Figure 5.1: Scheduling and Optimization Steps Before and After GA

Substitution. ... 182

Figure 5.2: Generation of New Parents in the Proposed GA 186

Figure 5.3: Generation of Offsprings in the Proposed GA 187

Figure 5.4: Carter Cost (2.1) vs. Number of Parents for sta -f-83 dataset 197

Figure 5.5: Carter Cost (2.1) vs. Number of Parents for ute -s-92 dataset.

 .. 197

Figure 5.6: Cost (2.1) vs. the Total Slot Conflicts for Benchmark Datasets

(Using Hill Climbing (HC) vs. Genetic Algorithm (GA)). Note: Continuous

line - graphs on the left of this figure are for HC and dashed line ðgraphs

are for GA. .. 206

1

CHAPTER 1

1

Introduction

There are many events and activities in this world that need to be

synchronized. From social community activities, work and transportation

to personal agendas, they all need to be pla nned and scheduled. The

effectiveness of all this planning depends on the efficiency of the schedules.

This thesis is focused on transforming the university examinationsõ

scheduling problem into a more structured domain, in which a new

representation of in formation through pre -processing is introduced. We

also studied and implemented a few optimization approaches that enhance

the solutions generated with the proposed approach.

This chapter presents the introduction to this research, followed by the

scope and objectives of this study. Later, we present the thesis contributions

in brief. Finally the thesis overview is specified which briefly explains how

this thesis is organized, chapter by chapter.

1.1 Introduction

The word òtimetableó (also known as schedul e) is defined by the Oxford

Advanced Learner's Dictionary (which can be accessed from

http://www.oxfordlearnersdictionaries.com) as òa list showing the times at

which particular events will happenó. Therefore, t imetabling or scheduling

2

can be thought of as a process of creating schedules that will list events

and the times at which they are planned to occur. In many organizations

or institutions, scheduling is an important challenge and is considered a

very tedious and time -consuming task. Normally, the per sonnel involved

in preparing the schedules will do it manually and, in most cases, using a

trial -and-error approach. Some scheduling problems involve many

constraints, and due to this the preparation of the schedules sometimes

becomes complex and expensive in terms of time and resources.

Wren (1996) mentioned that timetabling and scheduling has a

special type of relationship. The author defined timetabling as follows :

òTimetabling is the allocation, subject to constraints, of given resources to

objects being placed in space time, in such a way as to satisfy as nearly as

possible a set of desirable objectives.ó

 There are various areas of scheduling, which include educational

scheduling, sports scheduling, transportation scheduling and nurse

scheduling, etc . Due to the wide spectrum of applications of scheduling,

research in the area is also scattered and is usually problem -specific.

Scheduling research not only concentrates on generating a feasible

timetable but the efficiency of the solution generated is a lso sought after.

Numerous approaches or methods have been proposed since the 1960s by

researchers from the Operational Research and Artificial Intelligence

area, as surveyed by Qu et al . (2009a).

Among the broad areas of the scheduling problems, education al

scheduling is one of the most studied and researched areas in the

scheduling literature. This is due to the significant and time -critical

3

challenge associated with the requirement of preparing the schedules

periodically in schools, colleges and universi ties (quarterly, annually etc.).

Educational scheduling includes school scheduling (course/teacher

scheduling), university course scheduling, university examination

scheduling and more . For this scheduling problem, in most universities

nowadays, the studen ts are given the flexibility to enrol for courses across

faculties. That makes this kind of scheduling problem more challenging

and expensive to solve. In some cases, a number of people are in charge of

producing the schedules, and thousands of hours have been spent on this.

As an example , Universiti Teknologi Mara (UiTM) which is

Malaysia's largest institution of higher learning in terms of size and

population is no different in generating schedules. Besides the main

campus in Shah Alam, UiTM has expanded nationwide with 12 state

campuses, 6 satellite campuses in Shah Alam, 11 state satellite campuses

and 21 affiliated colleges (http://www.uitm.edu.my/inde x.php/en/about -

uitm/uitm -profile -history/university -profile). This university offers more

than 500 academic programmes delivered by 24 faculties. The schedules

will be prepared each semester by the timetable committee which exist in

every faculty. The c ommittee is responsible to come up with a complete

schedule, which relates the lecturers, student groups and rooms. Unlike

other universities, UiTM has a different policy in disseminating

information to the students, most lectures are being conducted in sm all

classes with a minimum of 15 and a maximum of 40 students, which

introduces additional constrains to the preparation of the schedules.

4

In a different perspective, we have examined the number of

resources utilized to generate the schedules each semester. For a typical

UiTM branch campus having 25 departments, each department will have

a minimum of two persons as a committee member, with a total of 50

persons involved in the whole exercise which constitute roughly about

16% of the total faculty members. In preparing the course schedules, 40

working hours will be required by each committee member, in overall the

whole exercise consumes 2000 hours. The time spent on producing

schedules in a large educational establishment may not be obvious;

however, cumula tively and collectively it is equivalent to the time that

may be spent to build an airplane (Wilson R, 2010).

Surveys and overviews of educational timetabling problems and

the proposed methods to solve them can be found in many publications

e.g. (Schmidt and Strohlein, 1980), (Carter, 1986), (Carter and Laporte,

1996), (Burke et al. , 1997), (Schaerf, 1999), (Qu et al ., 2009a), (Pillay,

2013), (Kristiansen an d Stidsen, 2013) and etc.

In this work, the focus is the university examination scheduling

problem. This problem is known as an NP hard real world problem

(Cooper and Kingston, 1996; and Even et al. , 1976). This problem has

increasingly become more challenging in recent years due to the raise in

studentsõ enrolments and especially when students are given the

flexibility to register modular courses across faculties (Burke et al. , 1994a)

and (McCollum, 2007).

The standard objective of university examination scheduling

problem is to satisfy the most important hard constraint that is to produce

5

feasible examination schedules (i.e. no conflicting exams scheduled

concurrently) . However, it is also important to produce a good quality

schedules according to some preferences, which can be considered as soft

constraints. The term ôsoftõ refers to the fact that the satisfaction of these

types of constraints is not really crucial but the fulfilment will benefit

some entities.

To date, the number of approaches or methods proposed to solve

examination scheduling problems is increasing. These research efforts

have evalua ted various approaches, created new methods and produced

promising findings or results. Efforts have also been devoted to

automating the scheduling process, so that the generation of schedules

could be carried out using computer software. However, due to the

inherent complexity of the problem, there is still room for improvement in

the current state of the art.

Common approaches developed in solving the timet abling problems

usually consist of two phases, i.e. the construction and improvement phase

(as claimed by (Hertz, 1991)). With regard to the constructive approach,

Burke et al. , (2010b) stated that a constructive approach begins with an

empty solution and additionally constructs a final (complete) solution by

utilizing some heuristics. As opposed to the constructive phase, the

improvement phase begins with a complete solution where by the quality

of the solution is enhanced (normally using certain procedures repeatedly

until the optimal solution is produced).

One of the most widely used method in the con struction phase is

the graph colouring heuristics , where it is defined as the problem of

6

colouring vertices of a graph with the most minimum number of colours so

that no two adjacent vertices share the same colour . Examination

timetabling problem can be re presented as a graph colouring problem,

where the vertices represent the exams, edges represent the clashes

between exams and colours represent the time slots (Carter, 1986),

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and

Powell, 1967) , (Laporte and Desroches,1984), (Burke et al ., 1994c), (Carter

et al ., 1994), (Burke and New all, 2004 a), (Asmuni et al ., 2009), (Abdul -

Rahman et al ., 2009), (Kahar and Kendall, 2010) and etc. Therefore, by

representing the examination scheduling problem us ing a graph colouring

problem, the main objective is to find the minimum number of time slots

to schedule all the exams without any conflicts.

Though graph colouring heuristic is naturally quite simple,

however an initial solution with good quality is ofte n produced. Coupled

with an improvement phase, many good quality examinations schedules

are being produced by the researchers (Ca rter, 1986), (Carter et al ., 1994),

(Joslin and Clements, 1999), (Burke and Newall, 2004 a), (Asmuni et al .,

2007), (Abdul -Rahman et al ., 2009), (Kahar and Kendall, 2010) and etc.

But despite this fact, the timetabling researchers are aware that there is

no single heuristic that can be used to solve all timetabling problems

because of the incorporation of problem -specific features in the heuristics.

Due to this, c urrent area of research concern is to investigate how to raise

the level of generality of state of the art algorithm, in order to deal with a

broader range of problems.

The other well known objective of examination scheduli ng in the

literature is to produce good quality timetable, where each exam taken by

7

individual student should be scheduled as far apart as possible from one

another. Carterõs evaluation function, proposed by Carter et al. (1996) is

extensively used by rese archers in the literature to measure the quality of

examination schedules based on the above mentioned criteria.

1.2 Scope and Objective

In this research, as mentioned above, our focus is the university

examination scheduling. As such, besides aiming to pro pose a method

that could generate feasible examination schedule s (which is by satisfying

the ha rd constraint, i.e. no conflicting exams are scheduled in the same

time slot), we are aiming to improve the quality of the initial examination

schedules construc ted.

Despite the frequent generation of these schedules which occurs

periodically in all universities across the world, we can still see some

students having an unfavourable examination schedules. Examples of

unfavourable schedules include those where stud ents have two or more

examinations in a row. We intend to research into how to improve the

existing methods available in solving this problem to ensure that better

quality schedules are generated.

To be specific, our main objective is t o propose a transf ormation of

the complex university examination timetabling problem space into a

more structured domain, in which a new representation of information

through pre -processing is introduced . Other objectives are:

8

¶ To propose a method (construction phase) that i s universal / applicable

which can be applied to a wider range of examination timetabling

problem s (in line with the concern of raising the generality level of the

algorithm) that can generate feasible examination schedules (i.e. no

conflicting exams are s cheduled in the same timeslot)

¶ To propose optimization method (improvement phase) which will

guarantee to improve the quality of the schedules (generated in the

construction phase) in terms of maximizing the gap between

consecutive exams taken by individua l students to allow students to

have more revision time between exams, by maintaining feasibility.

Since in this research study, besides aiming to produce feasible

schedule (by satisfying had constraint), we are looking at maximizing the

gap between consecutive exams taken by students, thus Carterõs

evaluation fun ction (Carter et al ., 1996) was deliberately selected to

measure the quality of the examination schedules generated.

1.3 Research Contributions

A summary of the contributions of this thesis are as fo llows (details are

presented in Chapter 6):

¶ Reduced complexity of the problem domain. The Domain

Transformation Approach proposed has transformed the

examination scheduling problem into smaller problem domains

that can always be solved in a reasonable amou nt of time.

9

¶ Reduction of problem space. Pre-processing of constraints has

grouped together certain data which provided very useful

information through new data representation which reduced the

laborious searching during scheduling.

¶ Ensuring feasible solut ions . Allocation of exams to slots and

split and merge procedures successfully created feasible exam

schedules (without fail) with encouraging figures in terms of

number of slots and cost.

¶ Efficiency . Backtracking procedure (Carter et al ., 1996) which is

an improved algorithm that was proposed and managed to further

reduce the number of timeslots of the initial feasible schedule.

¶ Optimization procedures . The Optimization stage that consists

of three steps: minimization of total slot conflicts, permutation o f

slots and reassignment of exams were proven to be very effective

procedures at optimizing the initial feasible exam schedules. A

significant reduction in costs for all datasets was recorded.

¶ Robust scheduling framework. The proposed framework in this

study is very systematic, efficient , robust and is proven to be very

flexible. This was demonstrated by the success of substituting other

procedures in the framework proficiently , i.e. substituting the

existing greedy traditional Hill Climbing with the Late A cceptance

Hill Climbing and Genetic Algorithm .

¶ Consistent performance . Through the avoidance of exhaustive

exploration of the search space which normally deploys random

10

selection between alternative choices during the optimization

process, the approach is capable of generating solutions that are

reproducible and consistent. This feature exhibits that the proposed

approach managed to raise the generality of the examination

scheduling algorithm, which is universal and applicable to a wide

range of university examination scheduling problem.

¶ Deterministic optimization pattern. Deterministic optimization

pattern obtained for all benchmark datasets is an overwhelming

achievement since to the best of our knowledge there are no claims

made by other researchers resul ting in a deterministic pattern for

optimization in the university examination scheduling.

1.4 Thesis Overview

This thesis is presented in 6 chapters. The first chapter presents the

introduction, scope and objectives of the research.

Chapter 2 describes the overview of the examination scheduling

problem, the scheduling approaches or methods developed and the

benchmark datasets used over the years in the scheduling research. Some

reviews and surveys done by other researchers in the scheduling

literature are p resented. The motivations that led to our research are also

discussed in this chapter.

In Chapter 3 we elaborate in detail on the Domain Transformation

Approach proposed in this study. Throughout this chapter, all the main

steps involved in generating feas ible and improved schedules are

11

described, including the steps involved in pre -processing, scheduling and

optimizations.

Chapter 4 discusses the overall results and the analysis after

applying the proposed methods to the Nottingham, Toronto and the

Interna tional Timetabling Competition (ITC) datasets.

Optimization in our proposed framework involves minimization of

total slots conflicts, permutations of exams slots, and reassignments of

exams between slots . Chapter 5 zooms in into one of the component of

optimization which is the permutations of exams slots which contributed a

big percentage of the overall performance achieved through the

optimization process discussed in Chapter 4 . In this chapter, we discusse d

and analysed the effectiveness of incorporatin g a global search procedure

(Genetic Algorithm) into the proposed optimization framework in

comparison to our previous incorporation of local search procedure.

In Chapter 6, we conclude the thesis by discussing the

contributions of the study to the researc h community and highlight

opportunities for possible future works.

12

CHAPTER 2

2

Background and Literature

Review

This chapter focuses on providing a background to the examinations

scheduling research by introducing relevant definitions for the schedulin g

and discussing the constraints imposed on this problem, as highlighted in

the literature. We also summarize and review various surveys done by

other researchers in this area. Later we briefly summarize the algorithmic

techniques proposed in this area by providing a timeline of representative

methods proposed in the last 40 years, in order to outline a general

landscape of the categories of methods available. Next, the benchmark

datasets, some pre-ordering strategies, and the most widely -used

evaluation fu nctions are discussed in brief. In addition to that, we compare

the performances of some selected methods that reported encouraging

results. Lastly, we also present the insights and motivations obtained by

this background study.

2.1 Background of the Schedu ling Research

Scheduling research has attracted researchers since the 1960s, especially

from the Operational Research community. Since then, there has been a

significant number of research activities in this area and the number is

still increasing. Over t he years, many researchers have made a number of

13

insightful contributions to the scheduling literature, as surveyed by Qu et

al. (2009a).

Most of the methods proposed have reported very encouraging

results, stating that the schedules generated really have good qualities;

however, it has been reported that not a single method or heuristic is able

to consistently solve a broad spectrum of scheduling problems because of

the incorporation of problem -specific features in the heuristics (Burke et

al ., 1994a). Thi s observation calls for more extensive research and study

into how to generate good quality schedules consistently.

In the following we provide definitions of the scheduling problem

adopted by previous researchers, in order to establish the right context f or

understanding the prior contributions. We also provide some reviews of a

list of publications including surveys conducted by some researchers in

this area.

2.1.1 Definition of Scheduling According to the

Scheduling Literature

Carter and Laporte (1996) def ined the basic problem in examination

scheduling as:

òThe assigning of examinations to a limited number of available time

periods in such a way that there are no conflicts or clashes.ó

Burke et al. (2004c) further defined scheduling or timetabling as fol lows:

òA timetabling problem is a problem with four parameters: T, a finite set of

times; R, a finite set of resources; M, a finite set of meetings; and C, a finite

14

set of constraints. The problem is to assign times and resources to the

meetings so as to satisfy the constraints as far as possible.ó

In the timetabling context, meetings can be referred to as events where

normally involved a meet -up between people at a particular location. A

general timetabling problem includes scheduling a number of events for

example exams or courses into certain number of periods.

According to Qu et al. (2009a), examination scheduling (timetabling)

problems can be defined as:

òExam timetabling problems can be defined as assigning a set of exams E =

e1, e2, é ee into a limi ted number of ordered timeslots (time periods T = t 1,

t2, étt and rooms of certain capacity in each timeslot C = C 1, C2, é Ct,

subject to a set of constraints.ó

A more general definition of examination scheduling problems is given

below:

The examination sc heduling problem is the problem of assigning a set of

examinations into time slots over a specific period of time such that it

satisfies the hard constraints (and some optional constraints if possible)

associated with the available resources.

15

2.1.2 Constrain ts in the Examination Scheduling

Problems

Normally, the main challenge of the examination scheduling problem is to

satisfy a wide variety of constraints. In the scheduling literature,

constraints can be classified into two categories; hard constraints and soft

constraints (Qu et al., 2009a).

¶ Hard constraints cannot be violated under any circumstances. For

instance, conflicting exams (i.e. exams which involve the same

students) cannot be scheduled concurrently. Another example of a

hard constraint that nee ds to be satisfied is the room capacity; i.e.

there must be enough space in a room to accommodate all students

taking a given exam.

A timetable that satisfies all the hard constraints is called a feasible

timetable.

¶ Soft constraints are not critical but t heir satisfaction is beneficial to

students and/or the institution. An example of a soft constraint is the

requirement to spread out the exams taken by individual students so

that they have sufficient revision time between the exams for which

they are enro lled. Typically, one cannot satisfy all of the soft

constraints; thus, there is a need for a performance function

measuring the degree of satisfaction of these constraints.

Some of the key (primary) hard constraints and soft constraints

suggested by Qu et al. (2009a) are listed in Table 2 -1 and Table 2 -2

respectively.

16

Table 2-1: Primary Hard Constraints in the Examination Scheduling

Problems

Primary Hard Constraints

1. No exams with common resources (e.g. st udents) can be

assigned simultaneously

2. Resources for exams need to be sufficient (i.e. number of exam

participants needs to be below the room capacity; enough rooms

for all of the exams)

Table 2-2: Prim ary Soft Constraints in the Examination Scheduling

Problems

Primary Soft Constraints

1. Spread conflicting exams as evenly as possible, or not in x

consecutive timeslots or days

2. Groups of exams are required to take place at the same time,

on the same day or at one location

3. Exams to be consecutive

4. Schedule all exams, or the longest exams, as early as possible

5. Order (precedence) of exams needs to be satisfied

6. Limited number of students and/or exams in any timeslot

7. Time requirem ents (e.g. exams (not) to be in certain timeslots)

8. Conflicting exams on the same day to be located nearby

9. Exams may be split over similar locations

10. Only exams of the same length can be combined in the same

room

11. Resource requirements (e.g. room facility)

Examination scheduling problems can be categorized as either

uncapacitated or capacitated. In the uncapacitated examination

scheduling problem, room capacities are not considered, while in the

capacitated problem the room capacities are treated as a hard constraint.

17

2.2 Reviews of Various Surveys in the

Scheduling Literature

From the 1980s until recently, several surveys have been undertaken in

the area of scheduling, with the approaches or methods used in the

literature to produce ex am schedules being reported. Schmidt and

Strohlein (1980), Carter (1986), Carter and Laporte (1996), Burke et al.

(1997), Schaerf (1999) and Qu et al. (2009a) have conducted surveys and

overviews of various methods and strategies applied by researchers to

solving scheduling problems. Many of the surveyed methods and

approaches have successfully solved the examination scheduling problems

and some algorithms/heuristics were reported to work well on particular

datasets while others performed better when used with different datasets.

A survey conducted in 1980 by Schmidt and Strohlein (1980)

summarized the available methods used to generate examination

schedules up until 1979. In 1986 Carter wrote a survey paper that

includes all the methods developed in the pr evious 20 years for scheduling

examination sessions. This survey (Carter, 1986) is referenced by many

researchers in the scheduling community. Based on both of the surveys

mentioned above ((Schmidt and Strohlein, 1980) and (Carter, 1986)) , it

was reported that the majority of researchers formalized the examination

scheduling problem as a graph colouring problem. In Carter (1986)õs

study, the graph colouring problem was used to produce a conflict -free

schedule by applying graph theory.

Ten years later, the author in the previously mentioned survey,

together with the co -author (Carter and Laporte, 1996), produced another

18

survey paper which focused on the state -of-the-art methods in the 1990s.

The authors have defined the examination scheduling problem as the

assignment of examinations into slots by rewarding the conflict -free

condition. The authors also introduced other soft constraints and new

benchmark datasets (Toronto) which are now very widely used and tested

by researchers in the examination scheduling a rea. Based on the graph

colouring methods, the authors have classified the scheduling methods

into four categories: cluster, sequential, meta -heuristics and the

constraint -based method. These methods were implemented and

experimented on the Toronto dataset s. The authors also implemented the

Backtracking process which they initially hypothesized could reduce the

number of time slots required to schedule the exams. This hypothesis was

proven correct in some datasets. The results for the experiments

conducted on the Toronto datasets were presented in the paper and since

then, the research community has been challenged to propose other

approaches with the objective of improving the quality of the schedules

based on the same benchmark datasets documented in the l iterature.

Another survey paper was published by Bardadym (1996) in the

same year as Carter and Laporte (1996) produced their survey report, as

mentioned in the previous paragraph. In his survey, Bardadym (1996)

classified educational scheduling problems i nto 5 common types: faculty

scheduling, classteacher scheduling, classroom assignment, course

scheduling and examination scheduling. According to the author,

examination scheduling is the most difficult task, and therefore it was

claimed that the schedulin g system was first proposed with the existence

of computers in the universities.

19

A survey of the state -of-the-art approaches and automated systems

in educational scheduling problems was presented a year later by Burke

et al. (1997). This survey discussed s everal major approaches in the

scheduling research which included Tabu Search, Genetic Algorithm,

Simulated Annealing, Memetic Algorithm and Constraint Logic

Programming.

 Qu et al. (2006) in their survey highlighted that the most studied

and researched ar ea of scheduling is educational scheduling; mainly the

examination scheduling, and due to this their survey concentrated on this

type of scheduling. From this literature, the authors have classified and

discussed the available methods used in examination s cheduling which

are motivated by raising the generality of the approaches: graph

heuristics, meta -heuristics, constraint -based methods, multi -criteria

techniques, hybridizations, and methods that concerned neighbourhood

structures, etc.

Qu et al. (2009a) in another survey highlights new trends and key

research achievements that have been carried out in the last decade. A

widespread survey of the development of the search methodologies and

automated systems for examination scheduling was done by the authors.

According to Qu et al. (2009a), meta-heuristics approaches and their

hybridization with other search techniques were found to be implemented

quite commonly in the examination scheduling problem. In this survey,

the author also claimed that different versi ons of problem datasets with

the same name have been circulating in the scientific research community

for the last ten years and this has generated some confusion among the

researchers. The author s have made the effort to rename the widely -

20

studied datasets in order to avoid this confusion. Apart from this, the

author also summarized the datasets used by some researchers and

reported in the literature.

Another recent survey in educational timetabling was conducted by

Pillay (2013). However, this survey was not focusing on the examination

timetabling problem, instead it can be considered as the first survey that

only concentrated on school timetabling. The survey defined school

timetabling and discussed a detailed overview on the proposed methods to

generate solutions. Besides that, the author also presented the different

hard and soft constraints in the school timetabling problem.

A comprehensive study of educational timetabling, a latest survey

paper was published recently by Kristiansen and Stidsen (2013) . The

authors concentrated on the main educational timetabling problems and

highlighted some of the main trends and research achievements within

educational planning problems . The author s mentioned that they did not

intend to perform any experimental comparis on on the different methods

used, but only to give an overview of the methods. As claimed by Qu et al.

(2009a), Kristiansen and Stidsen (2013) concluded that many of the used

solution approach es are of some kind of hybridization of multiple

heuristics.

2.3 Summary of Algorithmic Techniques in the

Scheduling Literature

The general approach to solving the scheduling problems usually consists

of two phases, i.e. the construction and improvement phases (Hertz, 1991).

21

In the first phase, the construction phase, a solution is constructed using a

sequential construction algorithm. At this point, the solution can be

feasible or infeasible. For an infeasible solution, an adjustment is made in

the second phase to make it feasible and for a feasible solution an

improvem ent is attempted to enhance its quality.

Scheduling research actually began with straightforward

sequential techniques in the 1960s, as discussed in detail by Qu et al.

(2006). Later, the emergence of many successful techniques was seen;

these can be categorized into several broad categories (Carter and

Laporte, 1996; Schaerf, 1999; Burke and Petrovic, 2002; Petrovic and

Burke, 2004; and Qu et al. , 2009a).

In their survey, Qu et al. (2006) made mention of the specialization

of the scheduling research into sub-areas of educational scheduling, nurse

scheduling, transport scheduling, sports scheduling, etc. However,

according to the authors the most studied and researched scheduling

problem is that of educational scheduling and in particular, exam

scheduling. The survey highlighted families of related heuristics deployed

in the solution of scheduling problems which include: graph heuristics,

meta-heuristics, constraint -based methods, multi -criteria techniques,

hybridizations, and methods that focus on the inves tigation of

neighbourhoods in the solution space.

In this section, we will highlight the key algorithmic techniques

that have been successfully applied in the examination scheduling

problem. Rather than explaining and summarizing the characteristics and

algorithms of each technique in detail, which can be found readily in the

22

literature (for example; Qu et al. , 2006; Qu et al. , 2009a etc.), we are

taking a different approach in presenting and describing the emergence of

these methods over the years.

We have provided a timeline that illustrates a historical lineage of

key algorithmic techniques for solving examination scheduling problems,

as can be seen in Figures 2.1 to 2.4. Please note that these timeline

figures were based on selected methods that are wid ely used and

described (most well -cited) in the literature (up to 201 4); therefore, recent

methods that are not as well established are not depicted in this diagram.

Another important note is that the methods were arranged according to

the category. In eac h category, the name of the method was displayed

according to the year it was proposed or used, with the intention of

illustrating the progression or origination of each method. Some methods

were hybridized or integrated with other methods but, in the inte rest of

clarity, the linkages between these methods were not shown in the

diagram since the main objective is to provide a general overview of the

methods according to their main categories.

23

YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1964

BRODER (1964)

First Ordering Strategy:

Largest Degree

COLE (1964)

Largest Degree Heuristic

1965

1966
PECK and WILLIAMS (1966)

Largest Degree Heuristics

1967

WELSH and POWELL (1967)

Graph Colouring Heuristic

-chromatic number

1968
WOOD (1968)

Largest Enrolment

1979
BRELAZ (1979)

Saturation Degree

1981
MEHTA (1981)

Saturation Degree

1983

1984

LAPORTE and DESROCHES

(1984)

All Graph Colouring

1990

JOHNSON (1990)

largest Enrolment & Largest

Degree

1992
KIAER and YELLEN (1992)

Weighted Graph Model

1994

BURKE ET AL. (1994c)

Graph Colouring

CARTER ET AL. (1994)

Sequential Heuristics

TECHNIQUE

CONSTRUCTION

HEURISTIC

Figure 2.1: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques ð Constructive Heuristics (1964 ð 1994)

24

YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1995

1996
CARTER ET AL. (1996a)

Ordering Heuristics

1998

BURKE ET AL. (1998)

Graph Heuristics with Random

Element

1999
JOSLIN and CLEMENTS (1999)

Adaptive Graph Coloring

BURKE and NEWALL (1999)

 Memetic Algorithm With

Decomposition

2001
CARTER and JOHNSON (2001)

 Clique Initialization

2002

2003

2004
BURKE and NEWALL (2004a)

Adaptive Heuristic Orderings

2005
ASMUNI ET AL. (2005)

Fuzzy Technique

2006

CORR ET AL. (2006)

 Graph Coluring & Kohonen

Self Organizing

2007
CARRINGTON ET AL. (2007)

Weighted Graph Model

ASMUNI ET AL. (2007)

Fuzzy Evaluation Function

QU and BURKE (2007)

Adaptive Decomposition

2008
KENDALL and LI (2008)

 Simplification

2009
ABDUL-RAHMAN ET AL. (2009)

Adaptive Ordering Strategy

ASMUNI ET AL. (2009)

Fuzzy Technique

2010

BURKE ET AL. (2010c)

Weighted Graph Model

KAHAR and KENDALL (2010)

Graph Colouring

PAIS and BURKE (2010)

Fuzzy Measure

2011

ABDUL-RAHMAN ET AL. (2011)

 Adaptive Decomposition and

Ordering

2012

SABAR ET AL. (2012)

Graph Colouring

2013

2014

ABDUL-RAHMAN ET AL. (2014)

Adaptive Linear Combination

of Heuristic Orderings

TECHNIQUE

CONSTRUCTION

HEURISTIC

Figure 2.2: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Technique s ð Constructive Heuristics (1995 ð 2014)

25

YEAR

1990
JOHNSON (1990)

2 Phase Simulated Annealing

1991

1992

1993

1994

1995

ROSS and CORNE (1995)

 Stochastic & Simulated

Annealing Hybrid Hill Climbing

WEARE ET AL. (1995)

Genetic Algorithm & Graph

Colouring Hybrid

COLIJN and LAYFIELD (1995)

Multi Stage Approach

1996
CHEN and BUSHNELL (1995)

Branch & Bound

BOIZUMAULT ET AL. (1996)

 Contraint Programming

GUERET ET AL. (1996)

Constraint Logic Programming

BURKE ET AL. (1996b)

 Evolutionary & Local Search

Hybrid

1997

1998

DAVID (1998)

Constraint Satisfaction

Technique

THOMPSON and DOWSLAND

(1998)

 2 Phase Simulated Annealing

1999
REIS and OLIVEIRA (1999)

Constraint Logic Programming

TERASHIMA-MARIN ET AL.

(1999)

 Genetic Algorithm & Maximal

Clique Hybrid

2000

2001
SIERKSMA (2001)

Integer Programming

ERBEN (2001)

 Genetic Algorithm Grouping &

Graph Colouring Hybrid

WHITE and XIE (2001)

OTTABU

DI GASPERO and SCHAERF

(2001)

 Graph Colouring & Tabu Seach

BURKE ET AL. (2001)

Multi Criteria Approach

PAQUETE and FONSECA

(2001)

Multi-objective Evolutionary

Algorithm

2002

DI GASPERO (2002)

 Multi-neighbourhood Tabu

Search

2003

MERLOT ET AL. (2003)

 Constraint Programming &

Hybridisation

MERLOT ET AL. (2003)

Three Phase Hybrid

 CASEY and THOMPSON (2003)

Iterative Greedy Randomized

Adaptive Search Procedure

AHMADI ET AL. (2003)

 Variable Neighbourhood

Search

PETROVIC and BYKOV (2003)

Multi Objective Technique

2004

DUONG and LAM (2004)

Constraint Programming &

Simulated Annealing

BURKE ET AL. (2004b)

Simulated Annealing & Great

Deluge Hybrid

WHITE ET AL. (2004)

Relaxed Tabu Search

PETROVIC and BURKE (2004)

Cased-Based Reasoning

YANG and PETROVIC (2004)

Cased-Based Reasoning with

Graph Colouring

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED

APPROACHES

METAHEURISTIC &

IMPROVEMENT HEURISTIC

HYPER HEURISTICS &

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

Figure 2.3: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques ð Various Heuristics (1990 ð 2004)

26

YEAR

2005
BOSCH and TRICK (2005)

Integer Programming

OZCAN and ERSOY (2005)

Genetic Algorithm & Violated

Directed Hierarchical Hill

Climbing

WONG ET AL. (2005)

Variable Neighbourhood

Descent

DOWSLAND and THOMPSON

(2005)

 Ant Algorithm & Graph

Colouring Hybrid

KENDALL and MOHD HUSSIN

(2005a) & (2005b)

Tabu Search Based Hyper

Heuristic

BURKE ET AL. (2005a)

 Hybrid Graph Colouring &

Hyper-Heuristic

QU and BURKE (2005)

 Hybrid Variable

Neighbourhood Search

 PETROVIC and YANG (2005)

Case Based Reasoning

COTE ET AL. (2005)

Hybrid Bi-Objective

Evolutionary Algorithm

2006

MIRHASSANI (2006)

Integer Pogramming

BURKE and BYKOV (2006)

 Flex Deluge

BURKE ET AL. (2006)

Cased-Based Reasoning

Selection

2007

ABDULLAH ET AL. (2007)

Large Neighbourhood

ERSOY ET AL. (2007)

HyperHill Climber & Memetic

Algorithm Hybrid

BURKE ET AL. (2007)

Multi Stage Hyper Heuristics

ELEY (2007)

Ant Algorithm

BURKE ET AL. (2007)

Graph Based Hyper Heuristic

Using Tabu Search

CHEONG ET AL. (2007)

Multi-Objective Evolutionary

Algorithm

2008

CARAMIA ET AL. (2008)

Hybrid hill Climbing

BURKE and BYKOV (2008)

Late Acceptance Hybrid Hill

Climbing

2009
QU ET AL. (2009c)

Integer Programming

SABAR ET AL. (2009)

Tabu & Exponential Monte

Carlo Hybrid

OZCAN ET AL. (2009)

Late Acceptance & Heuristic

Hybrid Hill Climbing

SABAR ET AL. (2009)

Honey Bee Mating

Optimization

QU ET AL. (2009b)

Adaptive Heuristic

Hybridisation

PILLAY and BANZHAF (2009)

Hierachical Hyper-Heuristics

& Highest Cost Heuristics

2010

AL-YAKOOB ET AL. (2010)

A Mixed-Integer Mathematical

Modelling

BURKE ET AL. (2010a)

 Variable Neighbourhood

Search & Genetic Algorithm

Hybrid

AL-BETAR ET AL. (2010)

Harmony Search Algorithm

2011

TURABIEH and ABDULLAH

(2011a)

Great Deluge & Megnetic-Like

Hybrid

TURABIEH and ABDULLAH

(2011b)

A Hybrid Fish Swarm

Optimization

2012

MCCOLLUM ET AL. (2012)

Integer Pogramming: A New

Model

BOLAJI ET AL. (2012)

Artificial Bee Colony

DEMEESTER ET AL. (2012)

Hyper-Heuristics

GOGOS ET AL. (2012)

Multi-Stage Algorithmic

Process

2013

ABDULLAH and ALZAQEBAH

(2013)

A Hybrid self-Adaptive Bees

Algorithm

ANWAR ET AL. (2013)

Harmony Search-Based

Hyper Heuristics

2014

AL-BETAR ET AL. (2014)

Memetic Techniques

ALZAQEBAH and ABDULLAH

(2014)

Artificial Bee Colony & Late

Acceptance Hill Climbing

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED

APPROACHES

METAHEURISTIC &

IMPROVEMENT HEURISTIC

HYPER HEURISTICS &

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques ð Various Heuristics (2005 ð 2014)

27

In the timeline diagrams above, several broad categories of

techniques used in examination scheduling can be seen. These include

constructive heuristics (for example, graph -based heuristics); fuzzy -based

techniques; decomposition techniques and neural network. Other

techniques include exact approaches; constraint -based; metaheuristic and

improvement heuristic; hyper -heuristics and case-based reasoning; and

multi -criteria and multi -objective techniques.

Based on the diagrams, we observed that majority of the proposed

methods in solving the examination timetabling problems were based on

graph -based heuristics and metaheuristic /improve ment heuristic

techniques, which the latter attracted more interests among the

researchers. Despite the rapid emergence or progression of the methods, it

was studied that many of the methods are the spin -off or followers of the

previous published approache s which did not differ substantially from

those established methods.

28

2.4 Benchmark Examination Scheduling

Datasets

From the published research it is clear that benchmark datasets were

used quite extensively. The usage of the same standard benchmark

dataset s in different research conducted by all researchers in this area is

very important in order to have a fair judgement about the efficiency and

effectiveness of a particular method. Besides, it can also provide a quick

understanding and generalization of th e strength or capability of a

particular method based on the results reported.

In the examination scheduling literature, the most extensively

used benchmark dataset is the Toronto dataset proposed by (Carter et al. ,

1996) which was made publicly available on the internet

[ftp://ftp.mie.utoronto.ca/pub/carter/testprob] . The characteristics of all the

datasets from Toronto benchmark problems are listed in Table 2 -3 in

Section 2.4.1. For the Toronto dataset, according to (Qu et al. , 2009a) 8 out

of 13 problem instances exist in 2 versions. Version I of the datasets which

are widely tested by other researchers will be presented in the table.

The data in the table are arranged according to the name of

institution, followed by the name of each dataset, number of e xams exists

in the problem, total number of students registered for the examination

session, number of total enrolments of students for the courses, conflict

density and lastly required number of exams slots for each dataset.

The Conflict Density represent s the ratio between the number of

elements of value "1" to the total number of elements in the conflict

29

matrix. A Conflict Matrix C is a square matrix of dimension number of

exams [number of exams x number of exams], and was defined where each

element Cij = 1 if exam i conflict with exam j (have common students), or

Cij = 0 if they donõt.

Other than Toronto datasets, we include two more datasets, which

we will be using in our experimentation phase at a much later stage, ie:

the University of Nottingham dat aset which could be accessed from

[http://www.cs.nott.ac.uk/~rxq/files/Nott.zip] and the International

Timetabling Competition 2007 dataset which can be retrieved from

[http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php] , presented in

section 2.4.2 and 2 .4.3 respectively. Definitions for column titles for these

new tables are the same as given earlier above.

30

2.4.1 University of Toronto Dataset

 Table 2-3: The Characteristics of University of Toronto Benchmark Dataset

Institution Name of

Dataset

No of

Exams

No Of

Students

No Of

Enrolments

Conflict

Density

Required

No Of

Slots

Carleton University car-s-91 (I) 543 18419 55522 0.14 32

Carleton University car-f-92 (I) 682 16925 56877 0.13 35

Earl Haig Collegiate ear-f-83 (I) 190 1125 8109 0.27 24

Ecole des Hautes Etudes Commerciales hec-s-92 (I) 81 2823 10632 0.42 18

King Fahd University kfu -s-93 461 5349 25113 0.06 20

London School of Economics lse-f-91 381 2726 10918 0.06 18

Purdue Uni versity pur -s-93 (I) 2419 30032 120681 0.03 42

Ryerson University rye-f-92 486 11483 45051 0.08 23

St. Andrews High School sta-f-83 (I) 139 611 5751 0.14 13

Trent University tre -s-92 261 4360 14901 0.18 23

University of Toronto, Arts & Science uta -s-92 (I) 622 21266 58979 0.13 35

University of Toronto, Engineering ute-s-92 184 2750 11793 0.08 10

York Mills Collegiate yor-f-83 (I) 181 941 6034 0.29 21

3
0

31

2.4.2 University of Nottingham Dataset

 Table 2-4: The Characteristics of University of Nottingham Benchmark Dataset

Institution Name of

Dataset

No. Of

Exams

No. Of

Students

No. Of

Enrolments

Conflict

Density

University of

Nottingham

Nott

(Nottingham a

or Nottingham

b)

800 7896 33997 0.03

3
1

32

2.4.3 I nternational Timetabling Competition 2007 (ITC2007) Dataset

 Table 2-5: The Characteristics of ITC2007 Benchmark Dataset

Name of

Dataset

No. of Exams No. of Students Requir ed No. of Slots Conflict

Density

Exam1 607 7891 54 0.0505

Exam2 870 12743 40 0.0117

Exam3 934 16439 36 0.0262

Exam4 273 5045 21 0.1500

Exam5 1018 9253 42 0.0087

Exam6 242 7909 16 0.0616

Exam7 1096 14676 80 0.0193

Exam8 598 7718 80 0.0455

3
2

33

2.5 Widely Used Ordering Strategies

In the process of allocating exams to exam slots, researchers have to

decide which exam to allocate firs t to one of the available time slots. With

this in mind, various ordering strategies were utilized by researchers (for

example; Broder, 1964; Cole, 1964; Peck and Williams, 1966; Welsh and

Powell, 1967; Laporte and Desroches, 1984; Burke et al. , 1994c; Car ter et

al. , 1994; Joslin and Clements, 1999; Burke and Newall, 2004 a; Abdul -

Rahman et al. , 2009; and Kahar and Kendall, 2010). It was proven that

the ordering strategies affect the final outcome and quality of the solution

generated (as discussed by Asmuni et al. , 2005). In the normal practise in

the timetabling literature, most researchers will try out all ordering

strategies (to preorder the datasets) and select the strategy that produce

the best results. The summary of the widely -used ordering strategies in

Graph Heuristics made by Qu et al. (2006) is presented in the following

table:

Table 2-6: Widely -Used Graph Heuristics in Exam Scheduling

Heuristics Ordering Strategy

Saturation Degree Increasingly by th e number of timeslots

available for the exam in the timetable at the

time

Largest Degree Decreasingly by the number of conflicts the

exams has with other exams

Largest Weighted

Degree

This is the same as Largest Degree but weighted

by the number of stude nts involved

Largest Enrolment Decreasingly by the number of enrolments for

the exam

Random Ordering Randomly ordered exams

Color Degree Decreasingly by the number of conflicts the exam

has with those scheduled at the time

34

2.6 Widely -Used Evaluation Functi on: Carter

Evaluation Function

The standard objective of examination scheduling that is widely used in

the literature is to minimize the cumulative inconvenience implied by the

temporal proximity of consecutive exams taken by individual students.

Based on this objective, in order to have a good quality timetable, each

exam to be taken by a student should be scheduled as far apart as possible

from one another. The quality of the timetable is measured by the cost

function originally proposed by Carter et al. (1996) as in the Equation

(2.1) below:

ää
-

= +=

1

1 1

|pi - pj|

1 N

i

N

ij

ij ws
T

 (2.1)

where N is the number of exams, sij is the number of students enrolled in

both exams, i and j , pj is the time slot when exam j is scheduled, pi is the

time slot when exam i is scheduled and T is the total number of students.

Based on this cost function, a student taking two exams that are | pj - pi |

slots apart, where | pj - pi | ={1, 2, 3, 4, 5}, leads to a cost of 16, 8, 4, 2,

and 1, respectively. The lower the cost obtained, the higher the quality of

the schedule, since the gap between two consecutive exams allows

students to have extra revision time.

It is worth noting here that the gap of the consecutive exams taken

by individual s tudents that are more than 5 slots apart (i.e. 6 and above),

will not have any penalty, therefore the cost will be zero. According to

Carter cost function (Equation 2.1), if all consecutive exams taken by all

students in the problem are scheduled 5 slots a part, then the timetable is

35

considered a zero cost timetable (but this is very seldom since in real life it

will cause a very long duration of examination session).

2.7 Performance of Methods Proposed in the

Examination Scheduling Literature

In order to anal yse the effectiveness of the available methods proposed in

producing feasible examination schedules, we have presented the results

in terms of the Carter cost (2.1) produced by some researchers and

compiled by Abdul -Rahman et al. (2011) and Qu et al. (2009a). The results

are presented in three different tables according to the categories of the

methods; i.e. constructive, hyper -heuristics, and numerous improvement

approaches on the Toronto datasets. Note that the first column of these

tables contains the na me of each dataset in the Toronto benchmark

problem as can be found in Table 2-3 of this thesis.

Table 2-7: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Be nchmark Datasets For Different

Constructive Approaches Reported in the Literature

Problem [1] [2] [3] [4] [5] [6] [7] [8]

car-s-91 (I) 7.10 4.97 5.45 5.29 5.08 5.03 5.18 5.08

car-f-92 (I) 6.20 4.32 4.50 4.54 4.38 4.22 4.44 4.34

ear-f-83 (I) 36.40 36.16 36.15 37.02 38.44 36.06 39.55 38.28

hec-s-92 (I) 10.80 11.61 11.38 11.78 11.61 11.71 12.20 11.13

kfu -s-93 14.00 15.02 14.74 15.80 14.67 16.02 15.46 14.42

lse-f-91 10.50 10.96 10.85 12.09 11.69 11.15 11.83 11.43

pur -s-93 (I) 3.90 - - - - - 4.93 5.74

rye-f-92 7.30 - - 10.38 9.49 9.42 10.04 9.37

sta-f-83 (I) 161.50 161.90 157.21 160.40 157.72 158.86 160.50 157.34

tre -s-92 9.60 8.38 8.79 8.67 8.78 8.37 8.71 8.73

36

uta -s-92 (I) 3.50 3.36 3.55 3.57 3.55 3.37 3.49 3.52

ute-s-92 25.80 27.41 26.68 28.07 26.63 27.99 29.44 26.24

yor-f-83 (I) 41.70 40.77 42.20 39.8 40.45 39.53 42.19 40.38

[1] -(Carter and Laporte, 1996), [2] -(Burke and Newall, 2004 a), [3] -(Qu and

Burke, 2007), [4] -(Asmuni et al ., 2009), [5] -(Abdul -Rahman et al ., 2009),

[6] -(Burke et al ., 2010c), [7] -(Pais and Burke, 2010), [8] -(Abdul -Rahman et

al ., 2011)

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Hy per-Heuristics Approaches Reported in the Literature

Problem [9] [10] [11] [12] [13] [14]

car-s-91 (I) 5.37 5.36 4.97 5.16 5.17 5.19

car-f-92 (I) 4.67 4.53 4.28 4.16 4.32 4.31

ear-f-83 (I) 40.18 37.92 36.86 35.86 35.70 35.79

hec-s-92 (I) 11.86 12.25 11.85 11.94 11.93 11.19

kfu -s-93 15.84 15.20 14.62 14.79 15.30 14.51

lse-f-91 - 11.33 11.14 11.15 11.45 10.92

pur -s-93 (I) - - 4.73 - - -

rye-f-92 - - 9.65 - - -

sta-f-83 (I) 157.38 158.19 158.33 159.00 159.05 157.18

tre -s-92 8.39 8.92 8.48 8.60 8.68 8.49

uta -s-92 (I) - 3.88 3.40 3.42 3.30 3.44

ute-s-92 27.60 28.01 28.88 28.30 28.00 26.70

yor-f-83 (I) - 41.37 40.74 40.24 40.79 39.47

[9] -(Kendall and Hussin, 2005a), [10] -(Burke et al. , 2007), [11] -(Pillay and

Banzhaf, 2009), [12] -(Qu and Burke, 200 9), [13] -(Qu et al. , 2009b), [14] -

(Burke et al. , 2010e)

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Other

Different Impr ovement Approaches Reported in the Literature

Problem [15] [16] [17] [18] [19] [20] [21]

car-s-91 (I) 5.10 4.50 5.40 5.20 6.60 4.60 4.80

car-f-92 (I) 4.30 3.93 4.20 4.40 6.00 3.90 4.10

ear-f-83 (I) 35.10 33.71 34.20 34.90 29.30 32.80 34.92

hec-s-92 (I) 10.60 10.83 10.40 10.30 9.20 10.00 10.73

37

kfu -s-93 13.50 13.82 14.30 13.50 13.80 13.00 13.00

lse-f-91 10.50 10.35 11.30 10.20 9.60 10.00 10.01

pur -s-93 (I) - - - - 3.70 - 4.73

rye-f-92 8.40 8.53 8.80 8.70 6.80 - 9.65

sta-f-83 (I) 157.30 158.35 157.00 159.20 158.20 156.90 158.26

tre -s-92 8.40 7.92 8.60 8.40 9.40 7.90 7.88

uta -s-92 (I) 3.50 3.14 3.20 3.60 3.50 3.20 3.20

ute-s-92 25.10 25.39 25.30 26.00 24.40 24.80 26.11

yor-f-83 (I) 37.40 36.53 36.40 36.20 36.20 34.90 36.22

[15] -(Merlot et al ., 2003), [16] -(Yang and Petrovic, 2004), [17] -(Cote et al .,

2005), [18] -(Abdullah et al. , 2007) [19] -(Caramia et al. , 2008), [20] -(Burke

et al. , 2010a), [21]-(Turabieh and Abdullah, 2011 a).

The results presented in the above three tables are arranged

according to the 13 Toronto datasets problem proposed by Carter et al.

(1996). These results were obtained by some of the researchers using

numerous techniques. Each column consists of the Carter cost (2.1) for

each dataset in this Toronto benchmark problem.

According to the Carter cost (2.1), we could say that the cost is

actually the average penalty of the students spread in the examination

schedule. An achievement of a zero cost timetable means that the

timetable is of a very high quality, and we can imagine tha t every single

student will have at least a five slotsõ gap between one exam and the next

in the examination session.

However, none of the costs obtained and reported in the

examination scheduling research on the Toronto benchmark problem have

a zero cost (as can be seen in the above three tables), which means that in

real life some of the inconvenience is tolerated in order to achieve a

shorter examination period.

38

In the three tables presented above, each bold value is the best

value for each dataset rep orted among the researchers. Overall, the costs

obtained are considered to be very encouraging, as the lowest Carter cost

(2.1) obtained is 3.14 for dataset uta -s-92 (I). Here the value 3.14 is the

value of the average penalty of the students spread in the examination

schedule.

It is worth noting here, however, that the listed methods have a

rather uneven performance. They perform well against some benchmark

problems and less well against others. One important point to note when

comparing the performance o f the various methods is that several of the

best results have been obtained by methods that did not report any results

for some datasets ; for example, for lse -f-91, pur -f-93 (I) and rye -f-92.

2.8 Pre -Processing Approach in the Examination

Timetabling

Based on the observations of Table 2-7 to 2-9, there are quite a

number o f approaches that are unab le to produce results for certain

benchmark dataset s, which after analys is we can determine that the

inability to produce feasible solution s for a problem is d ue to the size and

complexity of the re lation ships among the entities in the problem space.

For example, b y analyzing datasets lse-f-91, pur -f-93 (I) and rye -f-92, we

observed that these problems have a high ratio value of number of exams

against required number of slots (as can be seen in the last column of

Table 2-10). The ratios are 21.17, 57.60 and 21.13 for lse -f-91, pur -f-93 (I)

and rye -f-92 respectively which means that on average these are the

39

minimum number of exams to be allocated per slot. The hi gher this value

is, the harder it is to find the exams that are not conflicting among one

another.

Table 2-10: No of Exams to Required No of Slots Ratio

Name of

Dataset

No of

Exams

No Of

Students

No Of

Enrolm ents

Conflict

Density

Required

No Of

Slots

No of

Exams to

Required

No of

Slots

Ratio

car-s-91 (I) 543 18419 55522 0.14 32 16.97

car-f-92 (I) 682 16925 56877 0.13 35 19.49

ear-f-83 (I) 190 1125 8109 0.27 24 7.92

hec-s-92 (I) 81 2823 10632 0.42 18 4.50

kfu -s-93 461 5349 25113 0.06 20 23.05

lse-f-91 381 2726 10918 0.06 18 21.17

pur -s-93 (I) 2419 30032 120681 0.03 42 57.60

rye-f-92 486 11483 45051 0.08 23 21.13

sta-f-83 (I) 139 611 5751 0.14 13 10.69

tre -s-92 261 4360 14901 0.18 23 11.35

uta -s-92 (I) 622 21266 58979 0.13 35 17.77

ute-s-92 184 2750 11793 0.08 10 18.40

yor-f-83 (I) 181 941 6034 0.29 21 8.62

We foresee that there is a need to minimize or reduce the

complexity of the problem or we hypothesize that what if we were to

transform the pro blem into another problem where there is a possibility

that the complexity of the existing problem can be degraded into simpler

problems. To enable this, an understanding of the data is required, in line

40

with this notion we observe an approach by Thomas et al. (2009) which

tries to give a better understanding of the problem space to the timetable

designer has a merit in which by understanding the correlation of all the

entities in the problem space a solution can be generated.

Thomas et al. (2009) approached the timetabling problem by

introducing a pre -processing stage that visualized the timetabling data.

The researches were confident that the visualization will provide a new

insight or analysis of the timetabling data that would help the timetable

designer and decision maker to formulate a feasible timetable. The

researchers used Prefuse which is a Java -based extensible software

framework for pre -processing to visualize the data. They provided five

interaction techniques to the users to interact with the da ta, namely

Selection, Explore, Encode, Filter and Connects. Selection, enables the

marking of a particular data that can be further analysed. Explore,

enables the visualization of the timetabling data to be interacted, showing

a different perspective or co ncentrating only on a specific part of the

problem space. Encode, enables the user to change the visual

representation of the data. Filter, enables the user to add certain

restrictions on the data to be visualized enabling the user to focus on

certain part of the data. Connects allows the user to view interconnected

data within the problem space. The pre -processing stage provides

additional interactions to the scheduler (person) on the interrelation or

linkage of all the elements in the problem domain. The pre-processing

stage through visualization enables the timetable designer to learn more

about the data and with this knowledge it is hoped it would help the

timetable designer to design a better timetable.

41

 There is also another approach by Gunawan et al. (2008) which

provides another insight where the pre -processing of data to generate new

representation of information can be utilized within the algorithm to help

in constructing a better quality timetable. Gunawan et al. (2008) proposed

a hybrid approach w hich combines Tabu Search and Simulated Annealing

to solve the teacher and course scheduling simultaneously. The approach

consists of three phases; the pre -processing stage, initial construction

stage and the improvement stage. The initial construction sta ge

concentrates on finding the initial feasible timetable.

The researchers constructed new information which is the

information on which teacher is willing to teach a particular course,

resulting in a set of new data connecting a particular paper with the

probable teacher. The information was generated from the preferences

given by the teachers. The second information generated is the list of slots

that a particular teacher prefers to teach which is given by the day and

time period. These two lists are gene rated and sorted based on the

preferences set by the teachers.

Gunawan et al. (2008) reported that the pre -processing is done on

the information of preferences provided by the teachers, which is actually

considered as the soft constrains of the actual pro blem. The main problem

(scheduling) is being solved using the greedy heuristics (similar to

Gunawan et al. (2007a)) without the assistance on the new information

generated. This opens up a new avenue where the pre -processing can be

conducted on the data re lated to the hard constraints. New information

can be generated which will give a new representation that will enable the

algorithm to understand the problem space.

42

What interests us, we observe that these two papers (Thomas et al .

(2009); Gunawan et al. (2008)) which touched on pre -processing, did that

specifically and without the intention to want to alter the data

representation of the problem space. Hence, the intention that we have is

to provide an alternative methodology that transforms the problem s pace

into a different representation that could open -up new avenues or simplify

the problem to a more manageable and deterministic solution. This is

with the understanding that many of the researchers claim that the exam

timetabling is an NP -complete probl em which requires huge amount of

resources to fully explore the entire search space of a feasible solution and

more over to find the best solution within these feasible timetables.

2.9 Important Insights from the Scheduling

Literature and Motivations for the Research

Despite many methods having been proposed to date to solve the

examination scheduling problems, various findings have concluded that

there is no single heuristic that is able to solve all scheduling problems

effectively (Burke et al. , 1994). Meta -heuristics approaches - for example,

Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS)

etc., which were believed to generate promising results - were improved

further through the introduction of hyper -heuristic approaches (Qu et al. ,

2009a).

Notwithstanding the advantages and capabilities of the many

methods reported in the literature, we are aware that the results for some

problems are not easily reproducible because most of the algorithms

43

depend on some random number generation. These algorithms deploy

random selection between alternative choices during the optimization

process. This means that a simple change in the generation of random

numbers may affect very significantly the direction of the optimization

process. As a result, the r andomness generates different results. This

makes the results only statistically comparable. Since the results are hard

to reproduce, it is difficult to determine whether they are optimal or not.

A huge volume of publications have reported the investigati on and

refinement of hyper -heuristics. Various methods concerning the design

and selection of heuristics and hyper -heuristics have been proposed and

evaluated. On one hand, there have been various improvements in the

examination schedules produced using th ese methods. On the other hand,

this suggests that the results generated in this way cannot be seen as

definitive.

We have also learned from the background study that some

researchers have classified the examination scheduling problem as an NP

complete pr oblem (e.g. Cooper and Kingston, 1996; and Even et al. , 1976).

An NP complete problem is a problem which cannot be resolved to a global

optimum in a reasonable amount of time. Currently, with the flexibility of

the studentsõ enrolments, there was a great i ncrease in size of the

examination timetabling problem, which also has increased the

complexity of this problem (McCollum , 2007). As the examination

scheduling problem is classified as an NP complete problem, it can be

understood that the resources needed to solve the problem grow very

rapidly with the size of the problem. Hence, some problems cannot be

solved even on the fastest computers, and in the examination scheduling

44

context, it means that the optimal schedules are not generated

successfully and one has to accept sub-optimal (but feasible) solutions.

It is worth emphasizing that the examination scheduling problem

represents a challenging computational problem due to the strong

interactions between the many -to-many relationships between the data of

students and exams. The challenge and complexities of the problem

increase when most of the universities allow flexibility for the students to

register on modular courses across faculties (Burke et al. , 1994). The

increasing size of studentsõ enrolments and different choices of available

courses increases the challenge and complexity of this real -world problem

(McCollum , 2007).

From the background study we can learn that some methods that deploy

random selection between alternative choices during the optimiz ation

process failed to reproduce the solutions obtained previously. This is

because a simple change in the generation of random numbers may affect

very significantly the direction of the optimization process, thus generating

different solutions. This mean s that the results produced with methods

deploying random selection are only statistically comparable and cannot

guarantee the quality of every individual solution.

All of the above scenarios and phenomena create motivations for

further research. In gene ral, the literature review and background study

have provided insights into the following:

45

a) a new approach to analyzing the complex system by looking at

different levels of abstraction;

b) abstraction of essential features in order to simplify the data

used in scheduling by doing pre -processing of data and

constraints;

c) propose a definite step (a constructive approach) to schedule

the exams to ensure the method can reproduce the schedule at

any time;

d) sub-dividing the problems into smaller sub -problems in order to

reduce the NP complexity of the examination scheduling

problems as described in the literature, and therefore increase

the efficiency in terms of the computational time;

e) the exploration of the search space that is guided by one

heuristic which avoids e xhaustive exploration of the search

space.

46

CHAPTER 3

3

Domain Transformation

Approach to Examination

Scheduling

This chapter presents the proposed framework for solving examination

scheduling problems. We start by giving an overview of the Domain

Transformation Approach ð the approach that transforms the original

problem domain into different and smaller domains which are easier to

manage. We provide the general framework proposed in this study, which

consists of several main stages; namely, the pre -processing of data,

scheduling and optimization. Each step is then elaborated in greater detail

by providing the algorithm, its essential elements and its computational

complexity.

3.1 Domain Transformation Approach ð

Overview

Classical description of exam ination scheduling implies a search in a large

solution space which is typically accomplished with the aid of heuristics to

control the exploration of the search space. We propose that the

transformation of the problem domain is an effective methodological

approach to dealing with complex examination scheduling problems. In the

proposed approach, we define alternative data structures that capture the

47

essential dependences in the examination scheduling problem. By

performing an appropriate pre -processing of the original student -exam

data into suitable data structures, we can map the original problem

expressed in the multi -dimensional space of exams and students into a

space with a reduced dimensionality of exams and exam -slots. We will

refer to this approach to solving the scheduling problem as the Domain

Transformation Approach.

Domain Transformation Approach therefore could be defined as an

approach whereby a problem is transformed into a simpler problem

expressed in terms of different variables from the ori ginal problem

description. Examples of the domain transformation approach in other

application areas include the subdivision of a problem domain into

multiple sub -problems (e.g. the Danzig -Wolfe decomposition for solving

linear programming problems), trans formation of problem variables (e.g.

the Fourier Transform, employed to transform signals between time or

spatial domain into frequency domain) and the transformation from

continuous to discrete functional description (e.g. the Z -transform

converting time domain signals into discrete domain of trains of pulses), to

mention just a few prominent examples.

The proposed domain transformation of the examination scheduling

focuses on the pre-processing of constraints prior to the generation of a

feasible timeta ble. This is done through the abstraction of essential

features of the exam scheduling problem from the original student -exam

data. This data abstraction process constitutes a significant methodological

contribution of this study, as it enables subsequent optimization of the

examination schedule without the need to refer to the voluminous student -

48

exam data in the course of the optimization. One example of a pre -

processing is the identification of the clashing exams. This information will

ease and expedite the scheduling process later because less permutations

are needed to obtain this information since it is readily available. Unlike

other approaches, without employing pre -processing, a lot of permutations

are needed, since this information is implicit in d ata. Other examples of

pre-processing will be discussed in further detail in this chapter later.

This approach was inspired by insights from previous studies on

industrial process optimization (Bargiela , 1985; Argile et al ., 1996;

Peytchev et al ., 1996; and Bargiela et al ., 2002) and has been formalized as

a Granular Computing methodology (Pedrycz et al. , 2000; Bargiela and

Pedrycz, 2002; Bargiela et al. , 2004; and Bargiela and Pedrycz, 2008).

Granular Computing is an emerging conceptual and computing

parad igm of information processing methodology (Pedrycz et al ., 2000),

(Bargiela et al ., 2002), (Bargiela et al ., 2004), (Bargiela and Pedrycz, 2008).

In the concept of Granular Computing, the key element is multiple levels

of information processing sometimes c alled hierarchical processing. Each

level will perform different types of processing that will result in different

types of information representation or meaning. In general, Granular

Computing can be viewed as human inspired paradigms of computing and

inf ormation processing (Pedrycz et al. , 2000; Bargiela and Pedrycz, 2002;

Bargiela et al ., 2004; Bargiela and Pedrycz, 2008).

According to Granular Computing concept, the information

processing will create information granules and this process is known as

Inf ormation Granulation (Bargiela and Pedrycz, 2002). According to

49

Merriam -Websterõs Dictionary (http://www.merriam -webster.com), a

granule is defined as òa small particle; especially: one of numerous

particles forming a larger unitó. These information gran ules, with regard

to Granular Computing concept, are collection of entities that are arranged

together due to some criteria, and normally they are central to the

abstraction processes in solving many tasks.

Information Granulation (Bargiela and Pedrycz, 2002) serves as an

important medium to simplify problem that needs to be split into smaller

sub tasks. It provides an abstraction mechanism that reduces the overall

conceptual burden in the original problem space. By having different sizes

or representation s of the information granules, certain amount of details

can be hidden during the problem solving. This offers advantage in terms

of reducing the complexities of the problems. As we can imagine, the

consistent existence of some details are sometimes unwelc ome because

they complicate things and therefore they need to be hidden.

As far as the examination scheduling problem is concerned,

Granular Computing problem solving strategy could be applied

successfully to produce feasible and good quality exams schedul es. The

systematic approach which involves information processing will create new

data representation which will provide valuable and meaningful

information that could definitely ease the scheduling task.

Granular Computing in scheduling involves analyzing or

representing the scheduling problem at various levels of abstraction. For

example, at the fine resolution we may deal with individual students

taking individual exams (which is a standard problem definition) as

50

illustrated in Figure 3.1, at the coarser resolution we deal with classes of

exams (for example non -conflicting exams) and formalise the problem

description using these classes as illustrated in Figure 3.2. The

implication of this is that we deal with several complementary problem

descriptions at different levels of generality or accuracy. The more general

descriptions serve to facilitate an approximate problem solution in a

smaller search spac e and more detailed representations preserve the

possibility of refinement of the solutions. This approach contrasts with the

standard, detailed level of problem representation which requires

deployment of various heuristic methods to cope with computation al

complexity.

Figure 3.1: Illustration of an Example of a Standard Examination

Scheduling Problem (Fine Resolution Level)

51

Figure 3.2: Illustration of Cla sses of Exams - Group of Non -Conflicting

Exams With the Students Enrolled (Coarser Resolution)

The key hypothesis of this thesis is that the pre -processing of initial

problem data can lead to a transformation of the scheduling problem into a

new solution space in which the problem is solved more easily. This

aggregated data from the modified data space which are grouped

appropriately will be much easier to handle, as opposed to dealing with the

original data, as has been done in many previous studies .

We also argue that after applying pre -processing, scheduling could

be done more efficiently, generating reproducible results.

52

3.2 The Flow of the Proposed Approach

This research is proposing a different approach from the work done by

others who utilized pre -processing methods; for example, Gunawan et al .

(2007b), who used a hybrid algorithm which consists of three phases: (1)

pre-processing, (2) construction, and (3) improvement in the teacher

assignment -course scheduling problem. The pre -processing phase in their

work involves assigning teachers to courses by sorting them in descending

order, based on their preferences towards the course.

In the approach advocated in this thesis, the aim is for the pre -

processing method on the timetable datasets to be emplo yed before the real

scheduling process is undertaken. Possible data will be combined in the

datasets in such a way that will satisfy the hard constraints imposed on

the timetable. These combinations include the courses, rooms and

students. Each pre -processing stage will lead to a richer representation

and collection of data containing more information to make the final

scheduling easier. The revelation of dependencies existing within the data

at the aggregated level, which may be difficult to handle at the detailed

level, is the fundamental rationale behind the information granulation and

subsequent Granular Computing (Bargiela and Pedrycz, 2002). It is

postulated that the pre -processing will improve the efficiency and ease of

the scheduling task because onl y feasible solutions will be available to

work with, since the pre -processing eliminates all unfeasible timetables

from the solution space. The flow of the proposed work is given below:

53

Figure 3.3: The Flow of the Proposed Approach

The steps of the proposed work in creating feasible and quality

examination schedules are : standardization and verification of the problem

description data, pre -processing, scheduling and lastly, timetable

optimization, as illustrated in Figure 3.3.

The above figure clearly shows that in order to produce feasible and

good quality examination schedules, the very first step is to do a

standardization and verification of the original data files (timetabling

problem). Once this is done, pre -processing of data files will follow to

generate meaningful aggregated data construct that will ease the next

task which is the scheduling. In the scheduling stage, exams will be

assigned to slots, which always ensure the feasibility of the schedules.

Despite the feasibility of the schedules, the initial orderings of exams

produced by the scheduling stage might not be optimal (because it might

not fulfil certain soft constraints) , therefore this requires a separate

deployment of optimization process to further improve the quality, hence

the need of the last stage, the optimization. In this final stage, the

schedules cost will be minimized via certain procedures.

Scheduling

Timetable
Optimization

Data Standardization
And Verification

Pre-processing

54

3.2.1 Standardization and Verificat ion of the Problem

Description Data

The first step in this proposed approach is to perform the standardization

and verification of the problem description data. The standardization and

verification of data are done on the examination scheduling benchmark

datasets retrieved earlier that are freely made available to the public over

the internet. These data will be used to produce the information shown in

Figure 3.9, Figure 3.10: and Figure 3.11.

In the early stage, the datasets that were used are the benchmark

exam scheduling data for the University of Nottingham, semester 1, 1994 ð

95 and University of Toronto, as presented in the previous chapter. The

files contain information pertaining to students, exams, enrolments and

data (other data and constraints). This information will be retrieved and

assigned to a data representation format that would be easy for future

processing. At the same time, there is the concern of Lewis (2008)

regarding the disadvantage of heavy reliance on certain benchmark

datasets. Consequently, the proposed approach has also been tested on

other benchmark datasets from the Int ernational Timetabling Competition

2007 (ITC 2007).

The datasets produced and made available by the researchers come

in various representations and formats. The variations come from the

representations of information about courses, students and classes made

available in the datasets. For example, for University of Nottingham

dataset, there is a student -exam enrolment data representing a list where

each row contains a ten characters alphanumeric student ID (or code) and

55

eight characters exam code as depicted in Figure 3.4. Each student will

have a number of rows depending on the number of exams the student has

enrolled. For instance, the first five rows of data in the figure represents

that the student with s tudent ID ôA890186790õ was enrolled for five exams

with exam code: ôR13001E1õ, ôR13006E1õ, R13016E1õ, ôR13021E1õ and

ôR13022E1õ.

Unlike the Nottingham dataset, for the Toronto dataset, the

enrolment file consists of rows containing a variable -length list o f four

digits exam code. Each row represents exams enrolled by a particular

student. This can be seen in Figure 3.5. If we observe this figure, we can

see that the student code is not supplied in the fi le. Based on the list given

in this figure, we can view that the first student in the list (assume that

student id = ô1õ) is enrolled for one exam only which is exam with the code

ô0174õ. The other two students, in the second and third row were enrolled

for exam ô0329õ and ô0332õ respectively. The list continues with the fourth

student enrolled for exam ô0377õ, ô0378õ, ô0392õ and 0406õ, and the list

continues for other students in the dataset. I t i s worth highlighting here

that these two data files are tota lly in different format, thus need to be

standardized and verified in the initial stage.

Some researchers represent the courses in the form of course codes

and some in the form of unique numbers ð this is also the case with the

information about students a nd classes. Initially, a solution was developed

for one dataset with the intention to later provide a more generic

algorithm that would cater for various kinds of datasets formats and

arrangements.

56

Figure 3.4: Sample of Enrolment Data from the University of Nottingham

Dataset File

57

Figure 3.5: Sample of Enrolment Data from the Toronto Dataset File

Recall that we have also decided to test our approach on the

ITC2007 dataset. In this particular dataset, in contrast to the Toronto

dataset which is in the perspective of students, the ITC2007 is however is

in the perspective of exams. A sample of the ITC2007 data file is

illustrated in Figure 3.6. Each row represents an exam, where it consists of

a two or three digit numbers showing the duration of the exam in minutes.

The information in each row is then followed with a variable -length list of

a one digit up until four digits student code for all students enrolled for

this exam.

58

Figure 3.6: Sample of Enrolment Data from the ITC2007 Dataset File

In the above diagram, by assuming that both the first and second

row in the list represent exam with 180 minutes duration, if we observe

these two rows, we could see that there are 8 students (same students)

with student ID: ô312õ, ô752õ, ô760õ, ô768õ, 858õ, ô879õ, ô1920õ and ô1987õ were

enrolled for these two exams.

The main algorithm, as presented below, was designed to utilize a

specific data type to represent the scheduling data. It was decided to use

matrix as the main data type to represent all the information pertaining to

the scheduling problem in the solution space. S ince the matrix data type is

highly adaptable in terms of the complexity of the representation in the

sense that it can easily be converted from a single dimension to two

dimensions and so on, this robustness only requires minimal changes in

the actual pro gram coding to be implemented. In this study a few matrix

59

or data types were identified that will be used to keep the initial data and

also processed data within the system.

The main data type is the StudentExamList matrix that represents

the relationship between a student and all the exams that the student will

be required to sit. It is a matrix of dimension NumberOfStudents x

MaxNoOfExamForAStudent + 1 . This data structure will be used to

generate other data representations of the problem space. Each row index

will represents a student, the first column will contain the total number of

exams that the students have registered. Subsequent column will contain

the examination index. The StudentExamList will be supported by the

ExamLookupIndex and StudentLooku pIndex . The ExamLookupIndex is a

matrix of NumberOfExam x 2 . Each row in the ExamLookupIndex will hold

information for an exam. The first column contains the actual exam code

or name and the following column will contain the number of unique

students sitti ng for the exam. Similar to ExamLookupTable , the

StudentLookupTable holds information for a student. Each row represents

a student. The first column stores the studentõs actual ID Number and the

second column holds the number of exams the students will be sitting in.

The relations of these data structures can be seen in the following

algorithm.

The algorithm to alleviate the initial problem of dataset and format

variety is by providing an algorithm or function that would convert a

dataset format to a standa rd format that will be used as an input to the

pre-processing stage. The algorithm consists of three subroutines each for

a particular dataset, namely Nottingham, Toronto and ITC2007 dataset.

60

The Nottingham subroutine will extract information from the inpu t

file. The Nottingham input file consist of rows with two column of

information, The Student ID and the Exam ID each of this piece of

information will be converted to an integer value reference. The unique .

reference id for an exam and student will be use d to populate the

StudentExamList . While placing the exam id in the StudentExamList th is

subroutine will also keep the count of exams a student is enrolled and the

number of students sitting for a particular exam. Once the placement of all

the information is completed, a verification function will be called to verify

all the information in the StudentExamList is exactly the same is the

information in the original file. The verification will also check if there are

inconsistencies in the input file.

The Toronto subroutine is responsible to read and convert

information from the input file to the format that is required by the

scheduling algorithm. Each row in the T oronto input file is the list of

exams a student is enrolled in which is deliminated by spaces. T he Toronto

file does not provide any information on the student id thus requiring the

subroutine to assume that the first list of exams belongs to student with id

equals to 1 and so on until the end of the file. The algorithm will place the

exam id on the StudentExamList , keeps the tally for the number of exams

a student is taking and the number of students sitting for a particular

exam.

The ITC 2007 subroutine on the other hand will have to read and

filter information in the input files as part of the data is not being used in

our implementation. Each row in the ITC 2007 dataset file has the

duration of an exam and the list of student id enrolled in the exam

61

deliminated by a comma. Since the dataset does not provide any exam id,

the subroutine will assume th at the first entry in the dataset belongs to

exam id equals to 1 and so on. Similar to the previous two routines , this

routine will also populat e the StudentExamList , keeps track of the number

of exams a student is enrolled in and tally the number of stude nts sitting

for a particular exam.

Algorithm 1

If Nottingham Dataset

 Open the Data File

 While not End Of File

Read a line from file to Input

Get FirstToken from Input //StudentID

Get SecondToken from Input //ExamID

i = -1

j = -1

Find Index of SecondToken in ExamLookupIndex assign to i if

found

Find Index of FirstToken in StudentLookupIndex assign to j if

found

If j = = -1

 LastSLI = LastSLI + 1

 StudentLookupIndex[LastSLI] = FirstToken

 j = LastSLI

EndIf

If i = = -1

 LastELI = LastELI + 1

 ExamLookupIndex[LastELI] = SecondToken

 i = LastELI

 StudentExamList[j][(StudentExamList [j][0])+1] = i

StudentExamList [j][0]= StudentExamList [j][0]+1

Else

 StudentExamList [j][(StudentExamList [j][0])+1] = i

 StudentExamList [j][0]= StudentExamList [j][0]]+ 1

EndIf

UpdateLookupTable(StudentLookupIndex,j,

ExamLookupIndex,i)

 End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

If Toronto Dataset

Open the Data File

 While not EndOfFile

62

 i = i+1;

 j=0;

 Read a line from file to Input

While Input not empty

 j=j+1

 Get FirstToken from Input //Space Deliminated

 StudentExamList [i][j]=FirstToken

 UpdateLookupTable(StudentLookupIndex, i,

ExamLookupIndex, FirstToken)

End While

StudentExamList[i][0]= j

 End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

If ITC2007 Dataset

Open the Data File

 i = 1;

 While not EndOfFile

 Read a line from file to Input

 Get FirstToken from Input //Exam Duration,not used

 j = 0

 While Input not empty

 Get FirstToken from Input //Comma Deliminated

 j= j+1

 StudentExamList[FirstToken][

StudentExamExam[FirstToken][0]] = i

 StudentExamExam[FirstToken][0]= StudenExamList

[FirstToken][0]+1

 UpdateLookupTable(StudentLookupIndex,FirstToken,

ExamLookupIndex,i)

 End While

 i = i + 1

End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

Figure 3.7: Algorithm for Retrieving Enrolment Data, Standardization and

Verification

63

3.2.2 Pre -processing

A key step in the proposed exam scheduling method is the pre -processing

of constraints prior to the generation of a feasible timetable. This is done

through the abstraction of essential features of the exam scheduling

problem from the original student -exam data.

One example of the information obtained from the pre -processing is

the identification of the clashing exams. Due to the need to ensure the

feasibility of timetables, typical timetabling algorithms check if exams do

not clash every time an exam is scheduled. In other words, for

conventional approaches, without the pre -processing stage, the clashing

information is implicit in data; thus, a lot of permutations requiring a lot

of time need to be done in order to create a feasible timetable. This

problem can be avoided using the approach of this study. The data

structure is part of the mechanism to ensure that the feasibility of all

generated schedules is maintained. By devising a data structure combining

non-clashing exams into separate entities one can avoid subsequent

feasibility checks. The data structure enables easy lookup of exams that

can be scheduled together. We take an example of exam A, if exam B is in

the non -clashing list of exam A, then they can be scheduled together.

Otherwise there is at least one student that is enrolled in exam A and

exam B. Hence, this approach deals only with feasible solutions.

The pre -processed data can also be utilized later to find another

information in the pre -processing stage; for instance, the non -clashing

exams information , all exam s will have its corresponding non -clashing

list . To find the non -clashing exams, we just need to focus solely on the

64

clashing exams information logically, by finding the inverse of the clashing

exams. This means that instead of doing a lot of cross -checking and cross-

referencing across many files, we are only employing the information that

we obtained through the previous pre-processing. At each stage of the next

level of pre -processing we will be doing a hierarchical processing that will

always provide us with richer information. The types of pre -processing

mentioned above are just examples. Other types of pre -processing and data

dependencies will be considered to further enrich the existing information

in order to minimize and simplify the scheduling process, thereby creating

a valid and optimal exam timetable.

The pre -processing stage has generated the following informati on:

1. Number of students for each exam.

2. List of students in each exam.

3. List of clashing exams for each exam.

4. List of non -clashing exams for each exam.

5. Generation of the exam -conflict matrix.

6. Generation of the conflict chain.

7. Generation of the spread matrix.

Generation of the Exam Conflict Matrix

The first pre -processing step is to determine potential clashes between

examinations and to count the number of students causing these clashes.

This information is used to construct an exam conflict matrix which is a

square matrix of dimension equal to the number of exams. Entries in this

matrix at position (i,j) represent the number of students causing conflict

65

between exams i and j . The exam conflict matrix is generated by

incrementing the value at position (i,j) by 1 for each student taking exams

i and j when the student -exam list is traversed. The matrix will contain a

negative number of students value (-s) at position i,j if there are s students

causing conflict between exams i and j. The exam conflict matrix is a static

data representation of the problem space. Information contain herein is

fixed, which represent the inter relation between an exam to another exam.

It forms the reference for allocation, optimization and calcula tion of the

schedules quality (C arter cost (2.1)). The algorithm to generate this matrix

is given in Figure 3.16.

Generation of the Conflict Chains

The clashes between exams are static information or relation which will

not change in a pro blem space. By this we mean that the exam clashes will

only change with an addition of a student taking both exam s or all the

students taking the two exams drop or unregister for either one of the

exam. A clash between two exams is a situation where there is one or more

students taking the two exam s, thus implies that the two exam s cannot be

scheduled concurrently . This representation provides useful information

granules that can be utilized in the scheduling process . Based on these

information granules we determine the minimum number of time slots

that are necessary for scheduling the given set of examinations. We refer

to this stage as the construction of conflict chains.

The algorithm deployed at this stage can be summarized as follows:

66

1. Initiate the a lgorithm by allocating all exams to time slot one.

2. Select the first exam as òcurrentó and initiate the counter for the

current conflict chain.

3. Label the current exam as òallocated to the current chainó and note all

of the exams that are in potential conflict with the current exam.

4. If the list of potentially conflicting exams is non -empty, re -allocate

those exams to the next available time slot. Otherwise, label the current

chain as complete and proceed to Step 6.

5. If the list of potentially confl icting exams is non -empty, select the first

exam from the list and repeat from Step 3 with the currently selected

exam.

6. Check if all exams allocated at Step 1 are belonging to one of the

conflict chains; if YES, then the algorithm terminates; if NO, the n the

conflict chain counter is incremented and the unallocated exam is taken

as òcurrentó for processing, starting from Step 3.

Figure 3.8: Algorithm to Generate Conflict Chains

In th is section we will ill ustrate the generation of conflict chain s

based on an example data. Assuming that Figure 3.9 is the student -exam

list that was generated after the standardization and data retrieval phase.

We are using four (4) students that have enrolled in total of 7 exams. The

exam-students l ist generated will be as in Figure 3.10.

This information will be used to generate the Exam Conflict Matrix,

resulting in a conflict matrix in Figure 3.12 . Note that the content s of the

Exam Conflict Matrix are negative values. Each value is derived from the

number of students that enrols in an exam from the x -axis and the y -axis.

67

Example we have two students taking exam E1 and E24 which is student

A and B.

The conflict chain s generation as illustrated in Figure 3.1 3 starts by

assigni ng all the exams to the first slot (i .e. slot number 1). Next the

algorithm will traverse the exam list that has been assign to slot 1 . It will

start with the first exam and marking it as assign to slot 1. It will then

check all other exams in slot 1 again st the accepted exam to determine if it

clashes (utilizing the exam clash list in the process). E1 has been marked

as accepted and the algorithm will check E1 with the rest of the content of

Slot 1. E24 is in the clash list of E1 thus marked as clash and i t will be

shifted to the next slot (slot 2) in the shifting phase , same goes to E300,

E45 and E60.

Upon completion of exam E1 inspection , the algorithm will mark

the second exam which is still unmarked or not allocated; the slot still

contains E512 and E73 . E512 is marked as accepted and the algorithm

will inspect E512 against E73 which will result in marking E73 as clash

and to be moved to the next slot. Upon completion of E512 inspection the

algorithm will mark another exam in S lot 1 as accepted, however Slot 1

currently does not contain any exams unallocated, hence marking the

completion of the checking phase.

In the next phase all exams that w ere marked as òto be shiftedó will

be shifted to the second slot, the exams are E 24, E300, E45, E73 and E60.

The checking cycle continues by accepting E24 and evaluating its clash

with ot her exams in S lot 2. E300 and E4 5 will be mark ed as to be shifted .

E73 will then be marked as accepted and E73 clash list will be inspected

68

and no exam is being marked as to be shif ted. Finally E60 will then be

marked as accepted and E60 clash list will be inspected and no exam is

being marked as to be shifted. In the subsequent shifting phase , E300 and

E45 are being shifted and the process continues until all the exams are

accepted.

Once the process of generating conflict chain s has been completed,

the algorithm will check the maximum number of slots obtain ed against

the maximum slot required for a dataset. If the value of current slot

configuration is lower than the maximum slot re quired, the exam in the

last slot will be separated to create another slot as illustrated in Figure

3.13 (After N Process). The final exam to slot allocation is depicted in

Figure 3.14 .

Figure 3.9: An Example of a representation of Student -Exam List

69

Figure 3.10: Exam-Students List Generated Based on the Student -Exam

List

Figure 3.11: Exam -Clashes List

70

Figure 3.12: Illustration of Exam -Conflict Matrix

71

Figure 3.13: Diagram Illustrating the Slot Alloca tion Process

72

Figure 3.14: Diagram Illustrating Exams Allocated To Slots

Figure 3.15: Conflict Chains Generated

The outcome of the above algorithm is a set of conflict chains that

represent mutually dependent exams that need to be scheduled in

different time slots in order to avoid the violation of hard constraints

(Figure 3.14) . However, the algorithm implies that it is possible to have

one exam belonging t o more than one conflict chain (although the

algorithm will ensure that the allocation of this exam to the time slot is

consistent in both chains). For this reason we perform the additional step

of merging these conflict chains, which happen to have common exams.

73

The merged conflict chains represent independent subsets of the

examination set that can be dealt with one at a time.

Generation of the Spread Matrix

Besides generating the independent conflict chains, as outlined above, the

number of students wh o take exams allocated to time slots that are 1, 2, 3,

4 and 5 time slots apart was evaluated. Since we are dealing with

information granules that represent a potential conflict between all exams

in one time slot and all exams in another time slot, regardl ess of what the

actual time slot numbers are, we create a framework for efficient

optimization of the cost function (measuring the quality of the timetable).

The following will describe the proposed scheme for renumbering the time

slots using the backgroun d knowledge about the structure of the cost

function. This stage will be referred to as maximizing the spread of

examinations.

Using the exam conflict matrix information together with initial

grouping of exams information through the early pre -processing stage, the

spread matrix is then generated. The spread matrix (Rahim et al. , 2009) is

a square matrix of dimension S, where S is a number of slots. Entries in

the spread matrix at position (p,q) represent the number of students who

take an exam from both sl ot p and slot q. The matrix is symmetrical with

diagonal elements being omitted because students can take only one exam

in any given exam slot. The spread matrix is created by incrementing the

value at position (p,q) by 1 if exam p and exam q are not group ed together

in the early allocation process (meaning they are clashing).

74

The pre -processing of the original student -exam data into the exam

conflict matrix and the spread matrix pays dividends in terms of

minimizing the subsequent cross -checking and cross-referencing in the

original data in the optimization process, thus speeding up the scheduling

task. The essence of pre-processing is summarized by the pseudocode in

Figure 3.16.

Algorithm 2

Read student-exam list

Initialise exam-conflict matrix to zero

Initialise spread matrix to zero

Initial allocation of exams to slots

Read exam-to-slot allocation vector

For i=1 to number-of-students

 For j=1 to number-of-exams-of-student-i -1

 For k=j to number-of-exams-of-student-i

 Increment entry exam-conflict(student-exam(j),student-exam(k)) by 1

 If exam-to-slot(student-exam(j))/=exam-to-slot(student-exam(k))

 THEN

 Increment matrix element spread(j,k) by 1

 End

 End

 End

End

Figure 3.16: Algorithms for Pre -Processing

The pre-processing stage is one of the biggest contributions towards

solving and minimizing the search space. In the approach that is proposed

and implemented in this study, the gr anulation of the problem space was

introduced using the exam -conflict matrix, spread matrix and exam -to-slot

vector to simplify the problem and provide an algorithm which is not NP

complete to solve the problem. The main computational component in the

algorithm is the outer loop which iterates through the student list, l which

ranges between 611 to 30032 based on the three benchmark datasets used

in this study as can be found in Chapter 2 . For each of the students there

is an inner loop to create a permutat ion of the exams that the students are

75

taking, m with itself to create the exam -conflict matrix and spread matrix.

The value of m has a limitation, which is actually the maximum number of

exams a student can enrol in a particular semester. By assuming tha t one

exam is equivalent to a one credit hour, a worst case scenario, a student

will enrol for a maximum of 25 exams. The number of exams m is selected

from a pool of exams ranging from 81 to 2419 based on the benchmark

datasets used in this study. The complexity of the algorithm can be

simplified to O(l x m x m) = O(lm 2). Within the problem domain when l is

increased its relative value towards m is huge making m irrelevant. The

value of m can be neglected due to the fact that m has a limit to its value ,

which is very small compared to the number of students l when it grows.

Thus, the complexity of the algorithm is simplified to O(l).

The pre-processing of data and constraints from the original problem space

will provide important information granules which in turn provide

valuable information for scheduling. The new aggregated data generated by

the pre-processing stage, i.e. exam conflict and spread matri ces, will

minimize the subsequent cross -checking and cross-referencing in the

original data in the optim ization process, thus expediting the scheduling

process.

3.2.3 Scheduling

After the pre -processing of data is completed, the next step is the

scheduling process. This is when the initial allocation of exams to slots is

done, i.e. grouping exams that are not conflicting in a group. In this study,

76

there are two methods for scheduling; the first is via the conflict chains

generation and the second is via the allocation method.

3.2.3.1 Scheduling for Uncapacitated Problems

Scheduling will be done using the derived info rmation from the pre -

processing stage. The timetable generated at this stage is based on pre -

processed data; therefore, it will always fulfil the hard constraints.

The generation of a feasible solution is achieved using an allocation

method which is based on the standard Graph Colouring Heuristic

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and Powell,

1967), (Laporte and Desroches,1984), (Burke et al. , 1994c), (Carter et al .,

1994), (Joslin and Clements, 1999), (Burke and Newall, 2004 a), (Asmuni et

al ., 2007), (Abdul -Rahman et al ., 2009), (Kahar and Kendall, 2010), which

is used to generate the allocation of exams to time slots. This method

allocates exams by placing exams with the highest conflicts first; it then

moves to other exams wit h lower conflicts. This is based on the principle of

an early allocation of those exams with the highest number of conflicts to

the available time slots. During this process, the number of conflicts of

exams which have not been scheduled yet is recalculate d to reflect the

latest updated status of exams. This means that all unallocated exams are

taken into consideration in every iterative step, rather than being

processed sequentially.

During the allocation of exams to slots, there will always be two

types of slots: empty slots and non -empty slots. Empty slots are the slots

are not yet been assigned any exams, where as non -empty slots are the

77

slots that already have exams been assigned to them. We have four

preferences for allocation determination which are: assigning conflicting

exams to non-empty slots; assigning conflicting exams to empty slots;

assigning non -conflicting exams to non -empty slots; and assigning non -

conflicting exams to empty slots. These have the values of 0.4, 0.3, 0.2 and

0.1, respectively . The higher the value, the higher the preference for

allocation.

Any unused slots are removed and provide a buffer -space for

subsequent optimization. The output is an allocation flag, exam -to-slot

vector which contains the slot numbers for all exams. An allocation flag is

a single dimensional array or also known as a column vector of dimension

[number of exams x 1] where each value in the vector corresponds to the

slot number where each exam in problem is assigned. At this point, the

number of slots coul d be determined by the maximum value in the

allocation flag.

The generation of a feasible solution (or what can be considered

here as a feasible conflict chain) is done by allocating a group of exams to

timetable slots which are verified by calling a veri fication procedure. The

process continues by calling the merging procedure to reallocate exams. By

splitting a slot p and reassigning constituent exams to other slots, the total

number of slots may be reduced if every exam in slot p can be allocated to

some other slot, i.e. is not in conflict with exams in other slots.

Algorithm 3

Generate a feasible allocation of group of exams to timetable slots

Verify allocation of exams to slots

Execute splitandmerge procedure

Split a slot p and reassign constituent exams to reduce the number of slots

78

Execute backtracking to further reduce number of slots

Figure 3.17: Algorithm for Allocation of Exams to Time slots

The generation of a feasible solution process through t he allocation

of exam to timetable slots in Algorithm 3 is further detailed in Algorithm

3a.

Algorithm 3a

Create the first slot, islot=1;

Initialize allocflag array, xs array and inew to 0.

initialize xe with the exam conflict matrix

while there is still exam unallocated

if inew > 0 there was a new assignment to allocflag

 update 'xe'

 Obtain an unscheduled exam id (istart) with the biggest conflict

 if the obtained exam has a confnum==0

 assign all exams not yet allocated with value nex + 1

 if exam 'istart' can't be allocated to 'islot-1' slots

 allocate istart to the last slot 'islot'

 update xs with the latest exam

 increment islot by 1

 update xs with the new slot availability

 else

 assign exam istart with value nex + 1 indicating deferred assignment

 inew=istart

end

initialize inew and xc matrix to 0

reinitialize xe with the exam conflict matrix

for i=1 to number of exams

if exam i is allocated to nex+1

 Assign ye the number of conflicts of exam 'i'

 for j=1 to islot

 if xs(j,i)==0

 Assign ys number of conflicts of slot 'jô

 Assign y number of conflicts of slot 'j' after allocating exam 'i'

 Obtain preference value based on ye and ys

 Assign xc(j,i) with ye + ys ïy + pref

 end

 end

 end

end

Identify exam with maximum conflict reduction potential

Identify slot to assign 'exam'

update slot conflict xs

allocflag(exam)=slot

79

while there is still exams allocated to slot nex+1

clear y1

 Update 'exam' column of 'xc'

 update the 'slot' row of 'xc'

 for i=1 to number of exams

 if exam i is assign to nex+1

 j=slot;

 Assign ye with number of conflicts of exam 'i'

 if xs(j,i)==0

 Assign ys with number of conflicts of slot 'j'

 Assign y the number of conflicts of slot 'j' after

allocating exam 'i'

 Obtain preference value based on ye and ys

 Assign xc(j,i) with ye + ys ï y + pref

 else

 Assign xc(islot,i) with 0.3

 end

 end

 end

 identify exam with maximum conflict reduction potential

 identify slot to assign 'exam'

 update slot conflict xs

 allocflag(exam)=slot;

if slot==islot

 add additional slot, update xs and xc

end

end

Figure 3.18: Algorithm for Allocation of Exams to Time slots

The above algorithm is divided into three parts, each having a loop

to do the allocation of exams to time slots. The first loop is responsible for

the first round of allocation, ensuring that the exams with the largest

number of conflicts are scheduled first into the slots. The loop has a

complexity of O(n) which is propo rtional to the number of exams. The

second loop will schedule exams which have been deferred in the first

round of allocation. It is a nested loop with two loops forming the external

loop and the internal loop. Both of these loops go through the exams list ;

thus, giving the element n as the maximum value, which results in a

complexity of O(n2). The final loop is responsible for allocating unallocated

80

exams which have not been scheduled in the first or second loop. The final

loop has a complexity of O(n2) wi th the maximum number of time slots to

solve the problem is equal to the number of exams, contributed by a for

loop nested in a while loop.

Overall, the whole process of allocating exams to time slot has the

complexity of O(n + n 2 + n 2), which totals to O(n + 2n 2) and a final

complexity of O(n2).

Effects of Pre -Ordering Exams on Scheduling

In the process of assigning exams to slots, or creating the conflict

chain, we have identified that the final outcome is highly dependent on the

ordering of the exams prior to the assignment. We can look further into

this phenomenon to identify the criteria or reasons for this behaviour.

Each exam in the examination scheduling has corresponding exams that

clash with it, except for any exam that is taken only by students who are

not sitting for any other exam. Whenever there are two students who are

both taking the same exam and either of them also has another exam, the

clashing situation exists. This situation is depicted in the following figure:

Figure 3.19: Figure Illustrating Exam E510 Clashes with Exam E66

81

In the above figure students E and F will both be sitting for exam

E510 and student F has an additional exam E66. When this situation

arises in the examination sched uling problem, we know that E510 clashes

with E66; thus, making these two exams interconnected and ensuring that

they cannot be scheduled in the same time slot or location in order to

adhere to the hard constraint imposed on the scheduling problem. The

above instance creates a link of dependence between these two exams. If

there exists one exam in a slot then we cannot have its counterpart in the

same slot. Another fact that needs to be highlighted is that the two exams

E510 and E66 actually contributed tow ards the calculation of the cost

function. Whenever these two exams are scheduled less than 5 slots apart,

it will add some weight to the cost function.

In an instance where there are other exams that the student is

sitting for and between these exams the re are other students who are also

sitting for it, this would result in an intertwined connection between the

exams. This creates a complex interlinking between these exams and

determines the outcome of the possible solutions that can be generated

during t he conflict chains generation, based on the order in which these

exams were assigned into slots. To prove this, we introduce a clash list for

a set of exams, as depicted in the following figure:

82

Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre -ordered

Using Ordering 1: Random Ordering (RO)

83

Figure 3.21: Slot Allocation Process for Random Ordering (RO)

In the above and following examples we omit the list of students

and other details since the information is no longer needed in the

processing. The figure above shows the exam list from E1 to E8 (the first

column); each is followed by other boxes containing the exam codes for

84

those exams with w hich they clash. We have obtained this arrangement

for conflict chain creation based on random ordering. The following figure

is another ordering of the same datasets which we have obtained through

the Largest Degree arrangement.

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre -ordered

Using Ordering 2: Largest Degree (LD)

85

Figure 3.23: Slot Allocation Process for Largest Degree (LD)

Figure 3.20 and Figure 3.22 are translated into two matrices as

shown below: clashA and clashB, respectively. Pre -processing has been

achieved by running the code to determine the number of minimum slots

required. The slot allocation process for the Random O rdering is shown in

Figure 3.21 and slot allocation pro cess for Largest Degree is show n in

86

Figure 3.23. As a result of going through the slot allocation pr ocess, the

following number of slots required for each ordering is obtained:

clashA=[

1 2 4 6 0 0

2 1 3 4 5 6

3 2 5 0 0 0

4 1 2 5 6 0

5 2 3 4 6 8

6 1 2 4 5 0

7 8 0 0 0 0

 8 5 7 0 0 0];

clashB=[

1 2 3 4 5 6

2 1 3 4 6 7

3 1 2 4 5 0

4 1 2 3 5 0

5 1 3 4 0 0

6 1 2 0 0 0

7 2 8 0 0 0

8 7 0 0 0 0];

a) Ordering 1 (clashA) : 5 slots

b) Ordering 2 (clashB) : 4 slots

We have also done some pre-processing on the problems of

benchmark datasets to determine the minimum number of slots required

to schedule the exams an d, as expected, different orderings have produced

different results. The differences can be seen in Table 3-1:

87

Table 3-1: Different Number of Slots Generate d After Pre -Processing By

Using Different Pre -Orderings

Based on these results we can generalize that different pre -

orderings result in a different number of slots being required and this will

also affect the quality of the schedules later on.

Implementations of Backtracking to Red uce the Number

of Slots

Reducing the number of slots for a solution reduces the number of days

and resources that will be utilized for the examination, thus reducing the

operational cost. However, by reducing the number of days, it will

Name of

Dataset

Minimum No. of

Slots Required

Using Random

Ordering (RO)

Minimum No. of

Slots Required

Using Largest

Enrolment (LE)

Minimum No. of

Slots Required

Using Largest

Degree (LD)

nott 26 19 18

car-s-91 (I) 44 35 32

car-f-92 (I) 48 36 34

ear-f-83 (I) 29 26 24

hec-s-92 (I) 22 22 20

kfu -s-93 25 21 20

lse-f-91 22 20 19

pur -s-93 (I) 54 41 38

rye-f-92 28 26 25

sta-f-83 (I) 35 35 35

tre -s-92 29 22 23

uta -s-92 (I) 43 37 36

ute-s-92 13 10 11

yor-f-83 (I) 29 25 27

88

definitely increas e the value of the cost function since the Carter cost (2.1)

function is highly dependent on the temporal distance between consecutive

exams, which is affected by the number of daysõ duration of the overall

examinations.

During the scheduling process, the order of processing the exams

may sometimes lead to a non -optimal assignment of exams to slots which

could create an infeasible schedule (i.e. does not satisfy the number of slots

required). This situation calls for a reassignment of exams from the initial

slot allocation to other slots in order to ensure the number of slots is

reduced to the required number and the schedule becomes feasible. This

kind of reassignment will need to revisit or backtrack through the initial

allocation or assignment process, an d therefore we will call this a

backtracking process. In the backtracking process, some assignments

which have already been made will be undone in order to schedule these

exams in other time slots. As a result, this simulates the generation of a

set of feasible schedules that will be used in the optimization process later.

The backtracking process takes place when we execute the

optimization stage to minimize the number of slots for a solution. The

main objective of the algorithm is to look for possible exa m movements

within the available slots and identify the best moves that can be made.

The specific objectives of the backtracking might include: 1) to

reduce the number of slots in order to satisfy the slots number

requirement in a given problem; 2) to prep are the non -optimal schedule for

further optimization; or 3) to undo certain assignments of exams to periods

during scheduling in order to allow other exams, which previously failed to

89

be assigned and caused the infeasibility of the schedule, to be schedul ed

first.

 In one of their approaches, Carter et al. (1996) utilized the

backtracking process in the main algorithm to come up with a feasible

solution for a timetable, giving the algorithm the advantage of undoing

steps; which is de -assigning exams from a period to obtain a previous

solution state, with the objective of assigning an exam which previously

could not be assigned to any one of the periods or slots. Carter et al. (1996)

concluded that the backtracking process managed to reduce the overall

solut ion length by 50%; thus, we found the algorithm very appealing and it

fitted easily into our implementation. Therefore, it was decided to use the

Carter et al. (1996) backtracking algorithm, with some modifications, as

the basis from which to eliminate or reduce the slots of the current

solution.

This is due to the fact that a reduction of slots involves rearranging

or reassigning allocated exams to new slots, which will result in the

modification of other related exams. By doing this, we are in the same

position as Carter et al . (1996), as the probability of the future movement

of exams to reach a feasible solution is uncertain; thus, we need to have

the capability to undo any movements made previously.

This is in anticipation of the fact that by reducing the number of

slots at the early stage, one can minimize the cost of timetables at the later

stage during the optimization process. The initial schedule with a few slots

(i.e. less than the required number of slots) can always be modified to one

with the required number of slots. We hypothesize that this could provide

90

a useful buffering space during the optimization involving permutations of

exam slots. Consequently, this has the potential to improve the quality of

the schedules (Rahim et al ., 2009; Rahim et al ., 2012).

After each exam has been assigned to a slot via the scheduling

process, backtracking is then performed to further reduce the number of

slots, if any reduction is possible (Rahim et al., 2013b). The backtracking

process in our proposed framew ork is illustrated by the following diagram.

Figure 3.24: Backtracking Stage in Our Proposed Framework

We have implemented the backtracking process used by Carter et al.

(1996). The backtracking took place after doing the scheduling using the

allocation method, as discussed in the previous section. The purpose of

implementing this is to see whether backtracking could reduce the number

of time slots required to schedule the exams.

The flowchart of the backt racking process implemented in our work

is given in Figure 3.25. Note that the general idea was based on the

91

backtracking algorithm proposed by Carter et al. (1996), but with some

modifications to suit o ur framework. Figure 3.26 outlines the pseudocode

of the whole process.

92

Figure 3.25: Flowchart of Backtracking Process

93

Algorithm 4

for i = 0 to Last _i

 for p=0 to Last_p

 if < i can fit to p>

 Assign i to p

 end if

 next p

 for p = 0 to Last_p

 Bp = 0

 x = all course where i conflicts

 for j = 0 to max(x)

 APaper = x[j]

 for p = 0 to Last_p

 if < APaper can fit to p>

 CostApaperAtP = <cost if Apaper is put

to p>

 end if

 next p

 if < total CostP = 0>

 if < i bumped APaper before>

 Bp = -1

 else

 Bp = Bp + 1

 Mark APaper to bump if p selected

 end if

 else

 <Get min cost and mark p for new location of

APaper>

 end if

 next j

 Calculate m for p

 next p

 Get min Bp

 if <min Bp = 0>

 Get all of p where Bp= 0

 Get min Mp for all p selected

 put i to p

 execute APaper shifting

 else

 if min Bp is infinity

 mark i as unable to schedule

 else

 Get all p for min Bp

 if p unique

 put i to p

 execute APaper (which is marked) shifting

 else

94

 get min Mp for p

 put i to p

 execute APaper (which is marked) shifting

 end if

 end if

 end if

Next i

Figure 3.26: Pseudocode for Backtracking

For each exam in the Exam_to_relocate list that we have selected

(which will be referred to as the current exam), we will calculate a Bp

value for each slot that we have as the solution, which is the number of

exams that will need to be relocated if the current exam is assigned to the

slot p (the process of finding the number of exams clashing with it in each

of the available periods). Please note that the exams clashing with the

current exam will be b umped to the Exam_to_relocate list, and thus will be

assumed to be unscheduled exams.

In the process of calculating the Bp value for each slot we create a

CurrentExamClashWith list for each slot that the exam can enter or be

relocated. All the exams which have students clashing will be included in

this list. The total number of the content of CurrentExamClashWith is the

Bp for the slot. If the exam is allocated there the content of

CurrentExamClashWith can easily be used to populate the

Exam_to_relocate li st.

Initially, each Bp value in each slot is assigned the value of 0 and if

an exam cannot be assigned to the slot for a specific reason, it will be

marked or given the value number_of_exams + 1. In the process of finding

the Bp, if the exam in the list ha s bumped any clashing exams encountered

95

in the period we are dealing with, then the Bp for this period is equal to

number of exams + 1 (Bp= nex + 1). This is a bit different from Carter et al.

(1996), who assigned an infinity value to the Bp whenever they

encountered this condition. We also assign Bp = nex+1 for a period, if the

exam in the list originated from this period. This is another modification to

Carterõs method to avoid a cyclic shift. We continue finding the Bp for all

periods for each exam in th e waiting list.

Each of the exams that can be relocated to accommodate the coming

exam has an indicator to determine whether the incoming exam has a

history of shifting out the exam to the relocation list. We create a

BumpMatric which is a matrix of exam x exam, where the rows represent

the Exam_to_reduce and columns represent CurrentExamClashWith . The

intersection between rows and columns has an indicator: the value 1

indicated the Exam_to_reduce has bumped the corresponding exam

CurrentExamClashWith . The value 0 indicates that Exam_to_reduce has

not bumped the corresponding exam CurrentExamClashWith. This value,

however, will change to 1 in the transfer stage if a ôbumpõ occurs.

We have taken the same approach as Carter et al. (1996) in that an

exam is al lowed to push out an exam to the relocation list only once during

the process; this is to eliminate the probability of creating a cyclic shift

resulting in an infinite loop of transferring exams out and into the slot. In

order to do this, we monitor or kee p track of the last slot that an exam in

the relocated list originated from. This is to ensure that the exam that has

been transferred out does not go back into its original slot when it is time

for the exam to be evaluated for relocation.

96

The purpose of f inding the Bps for all the periods is to determine

which period to choose to assign the exams in the waiting list. Bps for all

periods can range from the value of 0 to nex + 1. So, the best Bp would be 0

and the worst Bp would be nex + 1. This means that t he exam in the

waiting list will be assigned to the period with the minimum value of Bp.

The lowest Bp value will be the best criterion to be selected as the target

location for the Current exam relocation.

In the period selection stage, there is always a possibility of having

the same Bp values. If there are several periods with Bp = 0, then our

method will choose the first period with Bp=0 encountered or, in other

words, the first available period with no exams clashing with the exam in

the waiting list. In cases where the Bp ranges from the value 1 to nex

(Bp=1 to Bp=nex), and there exist multiple periods with the same Bps,

then our method will execute a selection based on the weighting given to

the periods.

The weighting given was based on the total numb er of students

having conflicts in both exams in the periods and the exam in the waiting

list. The period with the maximum value of the weighting will be selected;

thus, the exams in the period clashing with the exam in the waiting list

will be bumped to t he waiting list. The weighting given is mainly for the

purpose of breaking the ties of the same Bps.

Once the period or the location to assign the exam in the waiting

list is complete, the transfer stage follows. The transfer stage is the process

of transf erring the current exam in the waiting list to the new period

selected.

97

The above process then repeats for other exams in the waiting list.

If, at the end of the process, some exams fail to be assigned to any periods,

then we assume the backtracking proces s has failed; thus, the above

process will be undone and the previous configurations of allocation of

exams to periods will be used. The transfer stage will allocate the exam to

its new slot and it will also transfer out existing exams in the slot that

clashed with the incoming exam to the Exam_to_relocate list. All current

information that is affected by the move is initialized to its original value

before starting the evaluation for the next exam in the Exam_to_relocate

list. If the algorithm finds a situ ation where there is no solution to allocate

all the existing exams or any of the exams in the Exam_to_relocate list,

then it will revert and undo all of the movements of exams to obtain the

original placement before the reduction of the slot is executed.

The backtracking algorithm consists of a few levels of nested loops

that will increase the computational complexity. This is due to the fact

that we will be traversing and searching the solution space for all possible

moves that an exam can make and all mo ves are evaluated. The first loop

will traverse the list of exams that have to be selected to be relocated.

Within this loop there are two sequential loops. The first will traverse all

the available remaining slots to check if the exam can be allocated to the

slot; and, if this is possible, an allocation of the exam to the slot will take

place. The second loop will go through all the available periods and

evaluate the possibility of assigning the exam to other slots which have

conflicting exams. Within the second loop there are two loops; one inside

the other. Each of these loops has a different controlling logic. The

complexity of the main loop depends on the number of exams that need

98

rescheduling and would have a maximum value of n, being the number of

exams. The two sequential loops inside the main loop are controlled by the

number of slots currently available and required by the solution m. The

algorithm initially will have the complexity of O(n(m+m(n(m)))) . As the

value of m and n grow bigger, the value of m will be the same as n. The

initial algorithm complexity reduces to O(n(n+n(n(n)))) = O(n(n+n 3)). This

can be further reduced to O(n2 + n3) = O(n3).

Types of Backtracking Implemented in the Proposed

Framework

i. First Method: Backtracking 1 (BT1)

In th e first backtracking method, called here Backtracking 1 (BT1), we

attempt to eliminate the last utilized time -slot. We have implemented the

backtracking process used by Carter et al . (1996), but with some

modifications. In contrast to Carter et al. (1996)õs method, where

backtracking was performed during the initial placement of exams, in our

approach the placement of exams to their allocated slots has already been

completed; therefore, we are attempting to convert the infeasible schedule

into a feasible on e.

After allocations of exams to slots were completed, we identified all

the exams in the last slot and we assigned them to a waiting list of

unscheduled exams. Then, for each exam in this list, we initialized the

selection criterion, which is known as Bp (according to Carter et al. , 1996),

for all periods equal to zero (Bp=0). Next, for each exam in the list we

99

proceed by finding the number of exams clashing with it in each of the

available periods. Bp for each period is the number of exams clashing with

the exam currently being evaluated in the waiting list. Please note that

the exams clashing with the exam in the list are the exams that will be

bumped to the waiting list, and thus will be assumed to be unscheduled

exams. (Note also that we process the ex ams in the list on a ôFirst In, First

Outõ basis).

ii. Second Method: Backtracking 2 (BT2)

In the second backtracking approach (BT2), the objective is to eliminate

the slot containing the fewest number of exams after the allocation

method. The number of slo ts that will be eliminated is also 1 (the same as

BT1).

It is interesting to note here that, in BT2, the slot that will be

eliminated could be any slot in the schedule (in BT1 it is always the last

slot); therefore, it could be the first, in the middle or the last one. Once the

slot with the fewest exams has been determined, all the exams will be put

in a waiting list. Each exam in the list will be evaluated for reallocation as

with our first approach (BT1).

Differences between Carterõs Backtracking and the

Proposed Backtracking

The backtracking implemented by Carter et al. (1996) was used during the

initial placement process. However, in our approach the placement of

exams in their allocated slots has been completed. What we are doing is

100

using the backtrac king method to rearrange the placement of exams to

reduce the final number of time slots to schedule all the exams. We differ

in terms of approach and purpose from the backtracking of Carter et al.

(1996); we are utilizing the backtracking process to reduc e the number of

slots of an existing feasible solution and the other is utilizing the process to

allocate exams which could not be allocated via the normal process. Thus,

two different outcomes will be derived from the process, as depicted in the

two follo wing figures.

Figure 3.27: Flowchart for Carterõs Backtracking in General

no

yes

no

yes

no

yes

