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Abstract  

 

This research investigates Examination Timetabling  or Scheduling , with the 

aim of producing  good quality, feasible timetables that satisfy hard 

constraints and various soft constraints. A novel approach to scheduling , that 

of transformation of the problem space, has been developed and evaluated for 

its effectiveness.   

The examination scheduling  problem involves many constraints due to many 

relationships betw een students and exams, making it complex and expensive 

in terms of time and resources. Despite the extensive research in this area, it 

has been observed that most of the published methods do not produce good 

quality timetables consistently  due to the util isation of random -search. In 

this research we have avoided random -search and instead have proposed a 

systematic, deterministic approach to solving the examination scheduling  

problem . We pre-process data and constraints to generate more meaningful 

aggregated data constructs with better expressive power that minimise the 

need for cross-referencing original student and exam data at a later stage. 

Using such aggregated data and custom -designed mechanisms, the timetable 

construction is done systematically, while  assuring its feasibility. Later, the 

timetable is optimized to improve the quality, focusing on maximizing the 

gap between consecutive exams. Our solution is always reproducible and 

displays a deterministic optimization pattern on all benchmark datasets. 

Transformation  of the problem space into new aggregated data constructs 

through pre -processing represents the key novel contribution of this 

research. 
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CHAPTER 1  

1  

Introduction  

 

There are many events and activities in this world that need to be 

synchronized. From social community activities, work and transportation 

to personal agendas, they all need to be pla nned and scheduled. The 

effectiveness of all this planning depends on the efficiency of the schedules. 

This thesis is focused on transforming the university examinationsõ 

scheduling problem into a more structured domain, in which a new 

representation of in formation through pre -processing is introduced. We 

also studied and implemented a few optimization approaches that enhance 

the solutions generated with the proposed approach.    

This chapter presents the introduction to this research, followed by the 

scope and objectives of this study. Later, we present the thesis contributions 

in brief. Finally the thesis overview is specified which briefly explains how 

this thesis is organized, chapter by chapter.  

 

1.1 Introduction  

 

The word òtimetableó (also known as schedul e) is defined by the Oxford 

Advanced Learner's Dictionary  (which can be accessed from 

http://www.oxfordlearnersdictionaries.com) as òa list showing the times at 

which particular events will happenó. Therefore, t imetabling or scheduling 
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can be thought of as a process of creating schedules that will list events 

and the times at which they are planned to occur. In many organizations 

or institutions, scheduling is an important challenge and is considered a 

very tedious and time -consuming task. Normally, the per sonnel involved 

in preparing the schedules will do it manually and, in most cases, using a 

trial -and-error approach. Some scheduling problems involve many 

constraints, and due to this the preparation of the schedules sometimes 

becomes complex and expensive in terms of time and resources.  

Wren (1996) mentioned that timetabling and scheduling has a 

special type of relationship. The author defined timetabling as follows : 

òTimetabling is the allocation, subject to constraints, of given resources to 

objects being placed in space time, in such a way as to satisfy as nearly as  

possible a set of desirable objectives.ó 

   There are various areas of scheduling, which include educational 

scheduling, sports scheduling, transportation scheduling and nurse 

scheduling, etc . Due to the wide spectrum of applications of scheduling, 

research in the area is also scattered and is usually problem -specific. 

Scheduling research not only concentrates on generating a feasible 

timetable but the efficiency of the solution generated is a lso sought after. 

Numerous approaches or methods have been proposed since the 1960s by 

researchers from the Operational Research and Artificial Intelligence 

area, as surveyed by Qu et al . (2009a). 

Among the broad areas of the scheduling problems, education al 

scheduling is one of the most studied and researched areas in the 

scheduling literature. This is due to the significant and time -critical 
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challenge associated with the requirement of preparing the schedules 

periodically in schools, colleges and universi ties (quarterly, annually etc.).  

Educational scheduling includes school scheduling (course/teacher 

scheduling), university course scheduling, university examination 

scheduling and more . For this scheduling problem, in most universities 

nowadays, the studen ts are given the flexibility to enrol for courses across 

faculties. That makes this kind of scheduling problem more challenging 

and expensive to solve. In some cases, a number of people are in charge of 

producing the schedules, and thousands of hours have been spent on this.  

As an example , Universiti Teknologi Mara (UiTM) which is 

Malaysia's largest institution of higher learning in terms of size and 

population is no different in generating schedules. Besides the main 

campus in Shah Alam, UiTM has expanded  nationwide with 12 state 

campuses, 6 satellite campuses in Shah Alam, 11 state satellite campuses 

and 21 affiliated colleges  (http://www.uitm.edu.my/inde x.php/en/about -

uitm/uitm -profile -history/university -profile ).  This university offers more 

than 500 academic programmes delivered by 24 faculties.  The schedules 

will be prepared each semester by the timetable committee which exist in 

every faculty. The c ommittee is responsible to come up with a complete 

schedule, which relates the lecturers, student groups and rooms. Unlike 

other universities, UiTM has a different policy in disseminating 

information to the students,  most lectures are being conducted in sm all 

classes with a minimum of 15 and a maximum of 40 students, which  

introduces additional constrains to the preparation of the schedules.  
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In a different perspective, we have examined the number of 

resources utilized to generate the schedules each semester. For a typical  

UiTM  branch campus having 25 departments, each department will have 

a minimum of two persons as a committee member, with a total of 50 

persons involved in the whole exercise which constitute roughly about 

16% of the total faculty members. In preparing the course schedules, 40 

working hours will be required by each committee member, in overall the 

whole exercise consumes 2000 hours. The time spent on producing 

schedules in a large educational establishment may not be obvious; 

however, cumula tively and collectively it is equivalent to the time that 

may be spent to build an airplane (Wilson R, 2010).  

Surveys and overviews  of educational timetabling problems and 

the proposed methods to solve them can be found in many publications  

e.g. (Schmidt and Strohlein, 1980), ( Carter, 1986 ), (Carter and Laporte, 

1996), (Burke et al. , 1997), (Schaerf, 1999), (Qu et al ., 2009a), (Pillay, 

2013), (Kristiansen an d Stidsen, 2013) and etc. 

In this work, the focus is the university examination scheduling 

problem.  This problem is known as an NP hard real world problem 

(Cooper and Kingston, 1996; and Even et al. , 1976). This problem has 

increasingly become more challenging in recent years due to the raise in 

studentsõ enrolments and especially when students are given the 

flexibility to register modular courses across faculties (Burke et al. , 1994a) 

and (McCollum, 2007).  

The standard objective of university examination scheduling 

problem is to satisfy the most important hard constraint  that is to  produce 
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feasible examination schedules (i.e. no conflicting exams scheduled 

concurrently) . However, it is also important  to produce a good quality 

schedules according to some preferences, which can be considered as soft 

constraints. The term ôsoftõ refers to the fact that the satisfaction of these 

types of constraints is not really crucial but the fulfilment will benefit 

some entities.  

To date, the number of approaches or methods proposed to solve 

examination scheduling problems is increasing. These research efforts 

have evalua ted various approaches, created new methods and produced 

promising findings or results. Efforts have also been devoted to 

automating the scheduling process, so that the generation of schedules 

could be carried out using computer software.  However, due to the 

inherent complexity of the problem, there is still room for improvement in 

the current state of the art.  

Common approaches developed in solving the timet abling problems 

usually consist  of two phases, i.e. the construction and improvement phase 

(as claimed by (Hertz, 1991)).  With regard to the constructive approach, 

Burke et al. , (2010b) stated that a constructive approach begins with an 

empty solution and additionally constructs a final (complete) solution by 

utilizing some heuristics. As opposed to the  constructive phase, the 

improvement phase begins with a complete solution where  by the quality 

of the solution is enhanced (normally using certain procedures repeatedly  

until the optimal solution is produced ). 

One of the most widely used method in the con struction phase is 

the graph colouring heuristics , where it is defined as the problem of 
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colouring vertices of a graph with the most minimum number of colours so 

that no two adjacent vertices share the same colour . Examination 

timetabling problem can be re presented as a graph colouring problem, 

where the vertices represent the exams, edges represent the clashes 

between exams and colours represent the time slots  (Carter, 1986 ), 

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and 

Powell, 1967) , (Laporte and Desroches,1984), (Burke et al ., 1994c), (Carter 

et al ., 1994), (Burke and New all, 2004 a), (Asmuni et al ., 2009), (Abdul -

Rahman et al ., 2009), (Kahar and Kendall, 2010) and etc.  Therefore, by 

representing the examination scheduling problem us ing a graph colouring 

problem, the main objective is to find the minimum number of time slots 

to schedule all the exams without any conflicts.  

Though graph colouring heuristic is naturally quite simple, 

however an initial solution with good quality is ofte n produced. Coupled 

with an improvement phase, many good quality examinations schedules 

are being produced by the researchers (Ca rter, 1986 ), (Carter et al ., 1994), 

(Joslin and Clements, 1999), (Burke and Newall, 2004 a), (Asmuni et al ., 

2007), (Abdul -Rahman et al ., 2009), (Kahar and Kendall, 2010) and etc.  

But despite this fact, the timetabling researchers are aware that there is 

no single heuristic that can be used to solve all timetabling problems 

because of the incorporation of problem -specific features in the heuristics. 

Due to this, c urrent area of research concern is to investigate  how to raise 

the level of generality of state of the art algorithm, in order to deal with a 

broader  range of problems.  

The other  well known objective of examination scheduli ng in the 

literature is to produce good quality timetable, where each exam taken by 
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individual student should be scheduled as far apart as possible from one 

another. Carterõs evaluation function, proposed by Carter et al.  (1996) is 

extensively used by rese archers in the literature to measure the quality of 

examination schedules based on the above mentioned criteria.  

 

1.2 Scope and Objective  

 

In this research, as mentioned above, our focus is the university 

examination scheduling.  As such, besides aiming to pro pose a method 

that could generate feasible  examination schedule s (which is by satisfying 

the ha rd constraint, i.e. no conflicting exams are scheduled in the same 

time slot), we are aiming to improve the quality of the initial examination 

schedules construc ted. 

Despite the frequent generation of these schedules which occurs 

periodically in all universities across the world, we can still see some 

students having an unfavourable examination schedules. Examples of 

unfavourable schedules include those where stud ents have two or more 

examinations in a row.  We intend to research into how to improve the 

existing methods available in solving this problem to ensure that better 

quality schedules are generated.   

To be specific, our main objective  is t o propose a transf ormation of 

the complex university examination timetabling problem space into a 

more structured domain, in which a new representation of information 

through pre -processing is introduced . Other objectives are:  
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¶ To propose a method (construction phase) that i s universal / applicable 

which can be applied to a wider range of examination timetabling 

problem s (in line with the concern of raising the generality level of the 

algorithm)  that can generate feasible examination schedules (i.e. no 

conflicting exams are s cheduled in the same timeslot)  

¶ To propose optimization method (improvement phase) which will 

guarantee to improve the quality of the schedules (generated in the 

construction phase) in terms of maximizing the gap between 

consecutive exams taken by individua l students to allow students to 

have more revision time between exams, by maintaining feasibility.  

Since in this research study, besides aiming to produce feasible 

schedule (by satisfying had constraint), we are looking at maximizing the 

gap between consecutive exams taken by students, thus Carterõs 

evaluation fun ction (Carter et al ., 1996) was deliberately selected to 

measure the quality of the examination schedules generated.  

 

1.3 Research Contributions  

 

A summary of the contributions of this thesis are as fo llows  (details are 

presented in Chapter 6):  

¶ Reduced complexity of the problem domain.  The Domain 

Transformation Approach proposed has transformed the 

examination scheduling problem into smaller problem domains  

that can always be solved in a reasonable amou nt of time.  
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¶ Reduction of problem space.  Pre-processing of constraints has 

grouped together certain data which provided very useful 

information  through new data representation which  reduced the 

laborious searching during scheduling.  

¶ Ensuring feasible  solut ions . Allocation of exams to slots  and 

split and merge procedures successfully created feasible exam 

schedules (without fail) with encouraging figures in terms of 

number of slots and cost.  

¶ Efficiency . Backtracking procedure (Carter et al ., 1996) which is 

an improved algorithm that was proposed and managed to further 

reduce the number of timeslots of the initial feasible schedule.  

¶ Optimization procedures . The Optimization stage that consists 

of three steps: minimization of total slot conflicts, permutation o f 

slots and reassignment of exams were proven to be very effective 

procedures at optimizing the initial feasible exam schedules. A 

significant reduction in costs for all datasets was recorded.  

¶ Robust scheduling framework.  The proposed framework in this 

study is very systematic, efficient , robust  and is proven to be very 

flexible. This was demonstrated by the success of substituting other 

procedures in the framework  proficiently , i.e. substituting the 

existing greedy traditional Hill Climbing with the Late A cceptance 

Hill Climbing and Genetic Algorithm . 

¶ Consistent performance . Through the avoidance of exhaustive 

exploration  of the search space which normally deploys random 
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selection between alternative choices during the optimization 

process, the approach is capable of generating solutions that are 

reproducible  and consistent. This feature exhibits that the proposed 

approach managed to raise the generality of the examination 

scheduling algorithm, which is universal and applicable to a wide 

range of university examination scheduling problem.  

¶ Deterministic optimization pattern.  Deterministic optimization 

pattern obtained  for all benchmark datasets is an overwhelming 

achievement  since to the best of our knowledge there are no claims 

made by other researchers resul ting in a deterministic pattern for 

optimization in the university examination scheduling.  

 

1.4 Thesis Overview  

 
This thesis is presented in 6 chapters. The first chapter presents the 

introduction, scope and objectives of the research.  

Chapter 2 describes the  overview of the examination scheduling 

problem, the scheduling approaches or methods developed and the 

benchmark datasets used over the years in the scheduling research. Some 

reviews and surveys done by other researchers in the scheduling 

literature are p resented. The motivations that led to our research are also 

discussed in this chapter.  

In Chapter 3 we elaborate in detail on the Domain Transformation 

Approach proposed in this study. Throughout this chapter, all the main 

steps involved in generating feas ible and improved schedules are 
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described, including the steps involved in pre -processing, scheduling and 

optimizations.  

Chapter 4 discusses the overall results and the analysis after 

applying the proposed methods to the Nottingham, Toronto and the 

Interna tional Timetabling Competition (ITC) datasets.  

Optimization in our proposed framework involves minimization of 

total slots conflicts, permutations of exams slots, and reassignments of 

exams between slots . Chapter 5  zooms in into one of the component of 

optimization which is the permutations of exams slots which contributed a 

big percentage of the overall performance achieved through the 

optimization process  discussed in Chapter 4 . In this chapter, we discusse d 

and analysed the effectiveness of incorporatin g a global search procedure 

(Genetic Algorithm) into the proposed optimization framework in 

comparison to our previous incorporation of local search procedure.  

In Chapter 6, we conclude the thesis by discussing the 

contributions of the study to the researc h community and highlight 

opportunities for possible future works.   
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CHAPTER 2  

2  

Background and Literature 

Review  

 

This chapter focuses on providing a background to the examinations 

scheduling research by introducing relevant definitions for the schedulin g 

and discussing the constraints imposed on this problem, as highlighted in 

the literature. We also summarize and review various surveys done by 

other researchers in this area. Later we briefly summarize the algorithmic 

techniques proposed in this area by providing a timeline of representative 

methods proposed in the last 40 years, in order to outline a general 

landscape of the categories of methods available. Next, the benchmark 

datasets, some pre-ordering strategies, and the most widely -used 

evaluation fu nctions are discussed in brief. In addition to that, we compare 

the performances of some selected methods that reported encouraging 

results. Lastly, we also present the insights and motivations obtained by 

this background study.  

 

2.1 Background of the Schedu ling  Research  

 

Scheduling research has attracted researchers since the 1960s, especially 

from the Operational Research community. Since then, there has been a 

significant number of research activities in this area and the number is 

still increasing. Over t he years, many researchers have made a number of 
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insightful contributions to the scheduling literature, as surveyed by Qu et 

al.  (2009a). 

Most of the methods proposed have reported very encouraging 

results, stating that the schedules generated really have good qualities; 

however, it has been reported that not a single method or heuristic is able 

to consistently solve a broad spectrum of scheduling problems because of 

the incorporation of problem -specific features in the heuristics (Burke et 

al ., 1994a). Thi s observation calls for more extensive research and study 

into how to generate good quality schedules consistently.  

In the following we provide definitions of the scheduling problem 

adopted by previous researchers, in order to establish the right context f or 

understanding the prior contributions. We also provide some reviews of a 

list of publications including surveys conducted by some researchers in 

this area.  

 

2.1.1 Definition of Scheduling  According to the 

Scheduling  Literature  

 

Carter and Laporte (1996) def ined the basic problem in examination 

scheduling as:  

 

òThe assigning of examinations to a limited number of available time 

periods in such a way that there are no conflicts or clashes.ó 

 
Burke et al.  (2004c) further defined scheduling or timetabling as fol lows: 

òA timetabling problem is a problem with four parameters: T, a finite set of 

times; R, a finite set of resources; M, a finite set of meetings; and C, a finite 
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set of constraints. The problem is to assign times and resources to the 

meetings so as to satisfy the constraints as far as possible.ó 

In the timetabling context, meetings can be referred  to as events where 

normally involved a meet -up between people at a particular location. A 

general timetabling problem includes scheduling a number of events for 

example exams or courses into certain number of periods.  

 

According to Qu et al.  (2009a), examination scheduling (timetabling) 

problems can be defined as: 

òExam timetabling problems can be defined as assigning a set of exams E = 

e1, e2, é ee into a limi ted number of ordered timeslots (time periods T = t 1, 

t2, étt and rooms of certain capacity in each timeslot C = C 1, C2, é Ct, 

subject to a set of constraints.ó 

A more general definition of examination scheduling problems is given 

below: 

The examination sc heduling problem is the problem of assigning a set of 

examinations into time slots over a specific period of time such that it 

satisfies the hard constraints (and some optional constraints if possible) 

associated with the available resources.  
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2.1.2 Constrain ts in the Examination Scheduling 

Problems  

 

Normally, the main challenge of the examination scheduling problem is to 

satisfy a wide variety of constraints. In the scheduling literature, 

constraints can be classified into two categories; hard constraints and  soft 

constraints (Qu et al.,  2009a).  

¶ Hard constraints cannot be violated under any circumstances. For 

instance, conflicting exams (i.e. exams which involve the same 

students) cannot be scheduled concurrently. Another example of a 

hard constraint that nee ds to be satisfied is the room capacity; i.e. 

there must be enough space in a room to accommodate all students 

taking a given exam.  

A timetable that satisfies all the hard constraints is called a feasible 

timetable.  

 

¶ Soft constraints are not critical but t heir satisfaction is beneficial to 

students and/or the institution. An example of a soft constraint is the 

requirement to spread out the exams taken by individual students so 

that they have sufficient revision time between the exams for which 

they are enro lled. Typically, one cannot satisfy all of the soft 

constraints; thus, there is a need for a performance function 

measuring the degree of satisfaction of these constraints.  

Some of the key (primary) hard constraints and soft constraints 

suggested by Qu et al.  (2009a) are listed in Table 2 -1 and Table 2 -2 

respectively.  
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Table 2-1: Primary Hard Constraints in the Examination Scheduling 

Problems 

Primary Hard Constraints  

1.  No exams with common resources (e.g. st udents) can be 

assigned simultaneously  

2.  Resources for exams need to be sufficient (i.e. number of exam 

participants needs to be below the room capacity; enough rooms 

for all of the exams)  

 

Table 2-2: Prim ary Soft Constraints in the Examination Scheduling 

Problems 

Primary Soft Constraints  

1.  Spread conflicting exams as evenly as possible, or not in x 

consecutive timeslots or days  

2.  Groups of exams are required to take place at the same time, 

on the same day or at one location  

3.  Exams to be consecutive  

4.  Schedule all exams, or the longest exams, as early as possible  

5.  Order (precedence) of exams needs to be satisfied  

6.  Limited number of students and/or exams in any timeslot  

7.  Time requirem ents (e.g. exams (not) to be in certain timeslots)  

8.  Conflicting exams on the same day to be located nearby  

9.  Exams may be split over similar locations  

10.  Only exams of the same length can be combined in the same 

room 

11.  Resource requirements ( e.g. room facility)  

 

 

Examination scheduling problems can be categorized as either 

uncapacitated or capacitated. In the uncapacitated examination 

scheduling problem, room capacities are not considered, while in the 

capacitated problem the room capacities are treated as a hard constraint.  
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2.2 Reviews of Various Surveys in the 

Scheduling  Literature  

  

From the 1980s until recently, several surveys have been undertaken in 

the area of scheduling, with the approaches or methods used in the 

literature to produce ex am schedules being reported. Schmidt and 

Strohlein (1980), Carter (1986), Carter and Laporte ( 1996), Burke  et al. 

(1997), Schaerf (1999) and Qu et al.  (2009a) have conducted surveys and 

overviews of various methods and strategies applied by researchers to 

solving scheduling problems.  Many of the surveyed methods and 

approaches have successfully solved the examination scheduling problems 

and some algorithms/heuristics were reported to work well on particular 

datasets while others performed better when used with different datasets.  

A survey conducted in 1980 by Schmidt and Strohlein (1980) 

summarized the available methods used to generate examination 

schedules up until 1979. In 1986 Carter wrote a survey paper that 

includes all the methods developed in the pr evious 20 years for scheduling 

examination sessions. This survey (Carter, 1986) is referenced by many 

researchers in the scheduling community. Based on both of the surveys 

mentioned above  ((Schmidt and Strohlein, 1980) and (Carter, 1986)) , it 

was reported that the majority of researchers formalized the examination 

scheduling problem as a graph colouring problem. In Carter (1986)õs 

study, the graph colouring problem was used to produce a conflict -free 

schedule by applying graph theory.  

Ten years later, the author in the previously mentioned survey, 

together with the co -author (Carter and Laporte, 1996), produced another 
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survey paper which focused on the state -of-the-art methods in the 1990s. 

The authors have defined the examination scheduling problem as the 

assignment of examinations into slots by rewarding the conflict -free 

condition. The authors also introduced other soft constraints and new 

benchmark datasets (Toronto) which are now very widely used and tested 

by researchers in the examination scheduling a rea. Based on the graph 

colouring methods, the authors have classified the scheduling methods 

into four categories: cluster, sequential, meta -heuristics and the 

constraint -based method. These methods were implemented and 

experimented on the Toronto dataset s. The authors also implemented the 

Backtracking process which they initially hypothesized could reduce the 

number of time slots required to schedule the exams. This hypothesis was 

proven correct in some datasets. The results for the experiments 

conducted on the Toronto datasets were presented in the paper and since 

then, the research community has been challenged to propose other 

approaches with the objective of improving the quality of the schedules 

based on the same benchmark datasets documented in the l iterature.  

Another survey paper was published by Bardadym (1996) in the 

same year as Carter and Laporte ( 1996) produced their survey report, as 

mentioned in the previous paragraph. In his survey, Bardadym (1996) 

classified educational scheduling problems i nto 5 common types: faculty 

scheduling, classteacher scheduling, classroom assignment, course 

scheduling and examination scheduling. According to the author, 

examination scheduling is the most difficult task, and therefore it was 

claimed that the schedulin g system was first proposed with the existence 

of computers in the universities.  
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A survey of the state -of-the-art approaches and automated systems 

in educational scheduling problems was presented a year later by Burke  

et al.  (1997). This survey discussed s everal major approaches in the 

scheduling research which included Tabu Search, Genetic Algorithm, 

Simulated Annealing, Memetic Algorithm and Constraint Logic 

Programming.  

 Qu et al.  (2006) in their survey highlighted that the most studied 

and researched ar ea of scheduling is educational scheduling; mainly the 

examination scheduling, and due to this their survey concentrated on this 

type of scheduling. From this literature, the authors have classified and 

discussed the available methods used in examination s cheduling which 

are motivated by raising the generality of the approaches: graph 

heuristics, meta -heuristics, constraint -based methods, multi -criteria 

techniques, hybridizations, and methods that concerned neighbourhood  

structures, etc.  

Qu et al.  (2009a) in another survey highlights new trends and key 

research achievements that have been carried out in the last decade. A 

widespread survey of the development of the search methodologies and 

automated systems for examination scheduling was done by the authors.  

According to Qu et al.  (2009a), meta-heuristics approaches and their 

hybridization with other search techniques were found to be implemented 

quite commonly in the examination scheduling problem. In this survey, 

the author also claimed that different versi ons of problem datasets with 

the same name have been circulating in the scientific research community 

for the last ten years and this has generated some confusion among the 

researchers. The author s have made the effort to rename the widely -
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studied datasets  in order to avoid this confusion. Apart from this, the 

author also summarized the datasets used by some researchers and 

reported in the literature.  

Another recent  survey in educational timetabling was conducted by 

Pillay (2013). However, this survey was not focusing on the examination 

timetabling problem, instead it can be considered as the first survey that 

only concentrated on school timetabling. The survey defined school 

timetabling and discussed a detailed overview on the proposed methods to 

generate solutions. Besides that, the author also presented the different 

hard and soft constraints in the school timetabling problem.  

A comprehensive study of educational timetabling, a latest survey 

paper was published recently by Kristiansen and Stidsen (2013) . The 

authors concentrated on the main educational timetabling problems  and 

highlighted some of the main trends and research achievements within 

educational planning problems . The author s mentioned that they did not 

intend to perform any experimental comparis on on the different methods 

used, but only to give an overview of the methods.  As claimed by Qu et al.  

(2009a), Kristiansen and Stidsen (2013) concluded that many of the used 

solution approach es are of some kind of hybridization of multiple 

heuristics.  

 

2.3 Summary of Algorithmic Techniques in the 

Scheduling  Literature  

 

The general approach to solving the scheduling problems usually consists 

of two phases, i.e. the construction and improvement phases (Hertz, 1991). 
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In the first phase, the construction phase, a solution is  constructed using a 

sequential construction algorithm. At this point, the solution can be 

feasible or infeasible. For an infeasible solution, an adjustment is made in 

the second phase to make it feasible and for a feasible solution an 

improvem ent is attempted to enhance its quality.  

Scheduling research actually began with straightforward 

sequential techniques in the 1960s, as discussed in detail by Qu et al.  

(2006). Later, the emergence of many successful techniques was seen; 

these can be categorized into several broad categories (Carter and 

Laporte, 1996; Schaerf, 1999; Burke and Petrovic, 2002; Petrovic and 

Burke, 2004; and Qu et al. , 2009a).  

In their survey, Qu et al.  (2006) made mention of the specialization 

of the scheduling research into sub-areas of educational scheduling, nurse 

scheduling, transport scheduling, sports scheduling, etc. However, 

according to the authors the most studied and researched scheduling 

problem is that of educational scheduling and in particular, exam 

scheduling. The survey highlighted families of related heuristics deployed 

in the solution of scheduling problems which include: graph heuristics, 

meta-heuristics, constraint -based methods, multi -criteria techniques, 

hybridizations, and methods that focus on the inves tigation of 

neighbourhoods  in the solution space.  

In this section, we will highlight the key algorithmic techniques 

that have been successfully applied in the examination scheduling 

problem. Rather than explaining and summarizing the characteristics and 

algorithms of each technique in detail, which can be found readily in the 



22 
 

literature (for example; Qu et al. , 2006; Qu et al. , 2009a etc.), we are 

taking a different approach in presenting and describing the emergence of 

these methods over the years.  

We have provided a timeline that illustrates a historical lineage of 

key algorithmic techniques for solving examination scheduling problems, 

as can be seen in Figures 2.1 to 2.4. Please note that these timeline 

figures were based on selected methods that are wid ely used and 

described (most well -cited)  in the literature (up to 201 4); therefore, recent 

methods that are not as well established are not depicted in this diagram. 

Another important note is that the methods were arranged according to 

the category. In eac h category, the name of the method was displayed 

according to the year it was proposed or used, with the intention of 

illustrating the progression or origination of each method. Some methods 

were hybridized or integrated with other methods but, in the inte rest of 

clarity, the linkages between these methods were not shown in the 

diagram since the main objective is to provide a general overview of the 

methods according to their main categories.   
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YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1964

BRODER (1964)

First Ordering Strategy: 

Largest Degree

COLE (1964)

Largest Degree Heuristic

1965

1966
PECK and WILLIAMS (1966)

Largest Degree Heuristics

1967

WELSH and POWELL (1967)

Graph Colouring Heuristic

-chromatic number

1968
WOOD (1968)

Largest Enrolment

1979
BRELAZ (1979)

Saturation Degree

1981
MEHTA (1981)

Saturation Degree

1983

1984

LAPORTE and DESROCHES 

(1984)

All Graph Colouring

1990

JOHNSON (1990)

largest Enrolment & Largest 

Degree

1992
KIAER and YELLEN (1992)

Weighted Graph Model

1994

BURKE ET AL. (1994c) 

Graph Colouring

CARTER ET AL. (1994)

Sequential Heuristics

TECHNIQUE

CONSTRUCTION 

HEURISTIC

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques ð Constructive Heuristics (1964 ð 1994) 
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YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1995

1996
CARTER ET AL. (1996a)

Ordering Heuristics

1998

BURKE ET AL. (1998)

Graph Heuristics with Random 

Element

1999
JOSLIN and CLEMENTS (1999)

Adaptive Graph Coloring

BURKE and NEWALL (1999)

 Memetic Algorithm With 

Decomposition

2001
CARTER and JOHNSON (2001)

 Clique Initialization

2002

2003

2004
BURKE and NEWALL (2004a)

Adaptive Heuristic Orderings

2005
ASMUNI ET AL. (2005)

Fuzzy Technique

2006

CORR ET AL. (2006)

 Graph Coluring & Kohonen 

Self Organizing

2007
CARRINGTON ET AL. (2007)

Weighted Graph Model

ASMUNI ET AL. (2007) 

Fuzzy Evaluation Function

QU and BURKE (2007)

Adaptive Decomposition

2008
KENDALL and LI (2008)

 Simplification

2009
ABDUL-RAHMAN ET AL. (2009)

Adaptive Ordering Strategy

ASMUNI ET AL. (2009)

Fuzzy Technique

2010

BURKE ET AL. (2010c)

Weighted Graph Model

KAHAR and KENDALL (2010)

Graph Colouring

PAIS and BURKE (2010)

Fuzzy Measure

2011

ABDUL-RAHMAN ET AL. (2011)

 Adaptive Decomposition and 

Ordering

2012

SABAR ET AL. (2012)

Graph Colouring

2013

2014

ABDUL-RAHMAN ET AL. (2014)

Adaptive Linear Combination 

of Heuristic Orderings

TECHNIQUE

CONSTRUCTION 

HEURISTIC

 

 

 

 

Figure 2.2: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Technique s ð Constructive Heuristics (1995 ð 2014) 
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YEAR

1990
JOHNSON (1990)

2 Phase Simulated Annealing

1991

1992

1993

1994

1995

ROSS and CORNE (1995)

 Stochastic & Simulated 

Annealing Hybrid Hill Climbing

WEARE ET AL. (1995) 

Genetic Algorithm & Graph 

Colouring Hybrid

COLIJN and LAYFIELD (1995) 

Multi Stage Approach

1996
CHEN and BUSHNELL (1995)

Branch & Bound

BOIZUMAULT ET AL. (1996)

 Contraint Programming

GUERET ET AL. (1996) 

Constraint Logic Programming

BURKE ET AL. (1996b)

 Evolutionary & Local Search 

Hybrid

1997

1998

DAVID (1998)

Constraint Satisfaction 

Technique

THOMPSON and DOWSLAND 

(1998)

 2 Phase Simulated Annealing

1999
REIS and OLIVEIRA (1999)

Constraint Logic Programming

TERASHIMA-MARIN ET AL. 

(1999)

 Genetic Algorithm & Maximal 

Clique Hybrid

2000

2001
SIERKSMA (2001) 

Integer Programming

ERBEN (2001)

 Genetic Algorithm Grouping & 

Graph Colouring Hybrid

WHITE and XIE (2001)

OTTABU

DI GASPERO and SCHAERF 

(2001)

 Graph Colouring & Tabu Seach

BURKE ET AL. (2001) 

Multi Criteria Approach

PAQUETE and FONSECA 

(2001) 

Multi-objective Evolutionary 

Algorithm

2002

DI GASPERO (2002)

 Multi-neighbourhood Tabu 

Search

2003

MERLOT ET AL. (2003)

 Constraint Programming & 

Hybridisation

MERLOT ET AL. (2003) 

Three Phase Hybrid

 CASEY and THOMPSON (2003) 

Iterative Greedy Randomized 

Adaptive Search Procedure

AHMADI ET AL. (2003)

 Variable Neighbourhood 

Search

PETROVIC and BYKOV (2003) 

Multi Objective Technique

2004

DUONG and LAM (2004)

Constraint Programming & 

Simulated Annealing

BURKE ET AL. (2004b) 

Simulated Annealing & Great 

Deluge Hybrid

WHITE ET AL. (2004) 

Relaxed Tabu Search

PETROVIC and BURKE (2004) 

Cased-Based Reasoning

YANG and PETROVIC (2004) 

Cased-Based Reasoning with 

Graph Colouring

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED 

APPROACHES

METAHEURISTIC & 

IMPROVEMENT HEURISTIC

HYPER HEURISTICS & 

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

 

 

 

Figure 2.3: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques ð Various Heuristics (1990 ð 2004) 
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YEAR

2005
BOSCH and TRICK (2005)

Integer Programming

OZCAN and ERSOY (2005) 

Genetic Algorithm & Violated 

Directed Hierarchical Hill 

Climbing

WONG ET AL. (2005) 

Variable Neighbourhood 

Descent

DOWSLAND and THOMPSON 

(2005)

 Ant Algorithm & Graph 

Colouring Hybrid

KENDALL and MOHD HUSSIN 

(2005a) & (2005b)

Tabu Search Based Hyper 

Heuristic

BURKE ET AL. (2005a)

 Hybrid Graph Colouring & 

Hyper-Heuristic

QU and BURKE (2005)

 Hybrid Variable 

Neighbourhood Search

 PETROVIC and YANG (2005)

Case Based Reasoning

COTE ET AL. (2005) 

Hybrid Bi-Objective 

Evolutionary Algorithm

2006

MIRHASSANI (2006) 

Integer Pogramming

BURKE and BYKOV (2006)

 Flex Deluge

BURKE ET AL. (2006) 

Cased-Based Reasoning 

Selection

2007

ABDULLAH ET AL. (2007) 

Large Neighbourhood

ERSOY ET AL. (2007) 

HyperHill Climber & Memetic 

Algorithm Hybrid

BURKE ET AL. (2007) 

Multi Stage Hyper Heuristics

ELEY (2007) 

Ant Algorithm

BURKE ET AL. (2007) 

Graph Based Hyper Heuristic 

Using Tabu Search

CHEONG ET AL. (2007) 

Multi-Objective Evolutionary 

Algorithm

2008

CARAMIA ET AL. (2008) 

Hybrid hill Climbing

BURKE and BYKOV (2008) 

Late Acceptance Hybrid Hill 

Climbing

2009
QU ET AL. (2009c)

Integer Programming

SABAR ET AL. (2009) 

Tabu & Exponential Monte 

Carlo Hybrid

OZCAN ET AL. (2009) 

Late Acceptance & Heuristic 

Hybrid Hill Climbing

SABAR ET AL. (2009)

Honey Bee Mating 

Optimization

QU ET AL. (2009b) 

Adaptive Heuristic 

Hybridisation

PILLAY and BANZHAF (2009) 

Hierachical Hyper-Heuristics 

& Highest Cost Heuristics

2010

AL-YAKOOB ET AL. (2010) 

A Mixed-Integer Mathematical 

Modelling

BURKE ET AL. (2010a)

 Variable Neighbourhood 

Search & Genetic Algorithm 

Hybrid

AL-BETAR ET AL. (2010)

Harmony Search Algorithm

2011

TURABIEH and ABDULLAH 

(2011a) 

Great Deluge & Megnetic-Like 

Hybrid

TURABIEH and ABDULLAH 

(2011b) 

A Hybrid Fish Swarm 

Optimization

2012

MCCOLLUM ET AL. (2012) 

Integer Pogramming: A New 

Model

BOLAJI ET AL. (2012)

Artificial Bee Colony

DEMEESTER ET AL. (2012) 

Hyper-Heuristics

GOGOS ET AL. (2012) 

Multi-Stage Algorithmic 

Process

2013

ABDULLAH and ALZAQEBAH 

(2013)

A Hybrid self-Adaptive Bees 

Algorithm

ANWAR ET AL.  (2013) 

Harmony Search-Based 

Hyper Heuristics

2014

AL-BETAR ET AL. (2014)

Memetic Techniques

ALZAQEBAH and ABDULLAH 

(2014)

Artificial Bee Colony & Late 

Acceptance Hill Climbing

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED 

APPROACHES

METAHEURISTIC & 

IMPROVEMENT HEURISTIC

HYPER HEURISTICS & 

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

 

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques ð Various Heuristics (2005 ð 2014) 
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In the timeline diagrams above, several broad categories of 

techniques used in examination scheduling can be seen. These include  

constructive heuristics (for example, graph -based heuristics); fuzzy -based 

techniques; decomposition techniques and neural network. Other 

techniques include exact approaches; constraint -based; metaheuristic and 

improvement heuristic; hyper -heuristics and case-based reasoning; and 

multi -criteria and multi -objective techniques.  

Based on the diagrams, we observed that  majority of the proposed 

methods in solving the examination timetabling problems were based on 

graph -based heuristics and metaheuristic /improve ment heuristic 

techniques, which the latter attracted more interests among the 

researchers. Despite the rapid emergence or progression of the methods, it 

was studied that many of the methods are the spin -off or followers of the 

previous published approache s which did not differ substantially from 

those established methods.   
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2.4 Benchmark Examination Scheduling  

Datasets  

 

From the published research it is clear that benchmark datasets were 

used quite extensively. The usage of the same standard benchmark 

dataset s in different research conducted by all researchers in this area is 

very important in order to have a fair judgement about the efficiency and 

effectiveness of a particular method. Besides, it can also provide a quick 

understanding and generalization of th e strength or capability of a 

particular method based on the results reported.  

In the examination scheduling literature, the most extensively 

used benchmark dataset is the Toronto dataset proposed by (Carter et al. , 

1996) which was made publicly available on the internet 

[ftp://ftp.mie.utoronto.ca/pub/carter/testprob] . The characteristics of all the 

datasets from Toronto benchmark problems are listed in Table 2 -3 in 

Section 2.4.1. For the Toronto dataset, according to (Qu et al. , 2009a) 8 out 

of 13 problem instances exist in 2 versions. Version I of the datasets which 

are widely tested by other researchers will be presented in the table.  

The data in the table are arranged according to the name of 

institution, followed by the name of each dataset, number of e xams exists 

in the problem, total number of students registered for the examination 

session, number of total enrolments of students for the courses, conflict 

density and lastly required number of exams slots for each dataset.  

The Conflict Density  represent s the ratio between the number of 

elements of value "1" to the total number of elements in the conflict 
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matrix. A Conflict Matrix C is a square matrix of dimension number of 

exams [number of exams x number of exams], and was defined where each 

element Cij  = 1 if exam i conflict with exam j  (have common students), or 

Cij  = 0 if they donõt.  

Other than Toronto datasets, we include two more datasets, which 

we will be using in our experimentation phase at a much later stage, ie: 

the University of Nottingham dat aset which could be accessed from 

[http://www.cs.nott.ac.uk/~rxq/files/Nott.zip] and the International 

Timetabling Competition 2007 dataset  which can be retrieved from 

[http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php] , presented in 

section 2.4.2 and 2 .4.3 respectively. Definitions for column titles for these 

new tables are the same as given earlier above.  
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2.4.1 University of Toronto Dataset  

 

                        Table 2-3: The Characteristics of University  of Toronto Benchmark Dataset  

Institution  Name of 

Dataset  

No of 

Exams 

No Of 

Students  

No Of 

Enrolments  

Conflict 

Density  

Required 

No Of 

Slots 

Carleton University  car-s-91 (I)  543 18419 55522 0.14 32 

Carleton University  car-f-92 (I)  682 16925 56877 0.13 35 

Earl Haig Collegiate  ear-f-83 (I)  190 1125 8109 0.27 24 

Ecole des Hautes Etudes Commerciales  hec-s-92 (I)  81 2823 10632 0.42 18 

King Fahd University  kfu -s-93 461 5349 25113 0.06 20 

London School of Economics lse-f-91 381 2726 10918 0.06 18 

Purdue Uni versity  pur -s-93 (I)  2419 30032 120681 0.03 42 

Ryerson University  rye-f-92 486 11483 45051 0.08 23 

St. Andrews High School  sta-f-83 (I)  139 611 5751 0.14 13 

Trent University  tre -s-92 261 4360 14901 0.18 23 

University of Toronto, Arts & Science  uta -s-92 (I)  622 21266 58979 0.13 35 

University of Toronto, Engineering  ute-s-92 184 2750 11793 0.08 10 

York Mills Collegiate  yor-f-83 (I)  181 941 6034 0.29 21 

3
0
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2.4.2 University of Nottingham Dataset  

 

                 Table 2-4: The Characteristics of University of Nottingham Benchmark Dataset  

 

 

 

 

 

 

 

 

 

 

 

 

Institution  Name of 

Dataset  

No. Of 

Exams 

No. Of 

Students  

No. Of 

Enrolments  

Conflict 

Density  

University of 

Nottingham  

Nott 

(Nottingham a 

or Nottingham 

b) 

800 7896 33997 0.03 

3
1
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2.4.3 I nternational Timetabling Competition 2007 (ITC2007) Dataset  

 

                            Table 2-5: The Characteristics of ITC2007 Benchmark Dataset  

Name of 

Dataset  

No. of Exams  No. of Students  Requir ed No. of Slots Conflict 

Density  

Exam1  607 7891 54 0.0505 

Exam2  870 12743 40 0.0117 

Exam3  934 16439 36 0.0262 

Exam4  273 5045 21 0.1500 

Exam5  1018 9253 42 0.0087 

Exam6  242 7909 16 0.0616 

Exam7  1096 14676 80 0.0193 

Exam8  598 7718 80 0.0455 

 

3
2
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2.5 Widely Used Ordering Strategies  

 

In the process of allocating exams to exam slots, researchers have to 

decide which exam to allocate firs t to one of the available time slots. With 

this in mind, various ordering strategies were utilized by researchers (for 

example; Broder, 1964; Cole, 1964; Peck and Williams, 1966; Welsh and 

Powell, 1967; Laporte and Desroches, 1984; Burke et al. , 1994c; Car ter et 

al. , 1994; Joslin and Clements, 1999; Burke and Newall, 2004 a; Abdul -

Rahman et al. , 2009; and Kahar and Kendall, 2010). It was proven that 

the ordering strategies affect the final outcome and quality of the solution 

generated (as discussed by Asmuni  et al. , 2005). In the normal practise in 

the timetabling literature, most researchers will try out all ordering 

strategies (to preorder the datasets) and select the strategy that produce 

the best results.  The summary of the widely -used ordering strategies  in 

Graph Heuristics made by Qu et al.  (2006) is presented in the following 

table:  

Table 2-6: Widely -Used Graph Heuristics in Exam Scheduling  

Heuristics  Ordering Strategy  

Saturation Degree  Increasingly by th e number of timeslots 

available for the exam in the timetable at the 

time  

Largest Degree  Decreasingly by the number of conflicts the 

exams has with other exams  

Largest Weighted 

Degree 

This is the same as Largest Degree but weighted 

by the number of stude nts involved  

Largest Enrolment  Decreasingly by the number of enrolments for 

the exam 

Random Ordering  Randomly ordered exams  

Color Degree Decreasingly by the number of conflicts the exam 

has with those scheduled at the time  
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2.6 Widely -Used Evaluation Functi on: Carter 

Evaluation Function  

 

The standard objective of examination scheduling that is widely used in 

the literature is to minimize the cumulative inconvenience implied by the 

temporal proximity of consecutive exams taken by individual students. 

Based on this objective, in order to have a good quality timetable, each 

exam to be taken by a student should be scheduled as far apart as possible 

from one another. The quality of the timetable is measured by the cost 

function originally proposed by Carter et al.  (1996) as in the Equation 

(2.1) below: 

ää
-

= +=

1

1 1

|pi -  pj|

1 N

i

N

ij

ij ws
T

                                                      (2.1) 

where N is the number of exams, sij  is the number of students enrolled in 

both exams, i  and j , pj is the time slot when exam j  is scheduled, pi is the 

time slot when exam i  is scheduled and T is the total number of students. 

Based on this cost function, a student taking two exams that are | pj - pi | 

slots apart, where | pj - pi | ={1, 2, 3, 4, 5}, leads to a cost of 16, 8, 4, 2, 

and 1, respectively. The lower the cost obtained, the higher the quality of 

the schedule, since the gap between two consecutive exams allows 

students to have extra revision time.   

It is worth noting here that the gap of the consecutive exams taken 

by individual s tudents that are more than 5 slots apart (i.e. 6 and above), 

will not have any penalty, therefore the cost will be zero. According to 

Carter cost function (Equation 2.1), if all consecutive exams taken by all 

students in the problem are scheduled 5 slots a part, then the timetable is 
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considered a zero cost timetable (but this is very seldom since in real life it 

will cause a very long duration of examination session).  

 

2.7 Performance of Methods Proposed in the 

Examination Scheduling  Literature  

 

In order to anal yse the effectiveness of the available methods proposed in 

producing feasible examination schedules, we have presented the results 

in terms of the Carter cost (2.1) produced by some researchers and 

compiled by Abdul -Rahman et al.  (2011) and Qu et al.  (2009a). The results 

are presented in three different tables according to the categories of the 

methods; i.e. constructive, hyper -heuristics, and numerous improvement 

approaches on the Toronto datasets.  Note that the first column of these 

tables contains the na me of each dataset in the Toronto benchmark 

problem as can be found in Table 2-3 of this thesis.  

Table 2-7: Comparison of Results  in Terms of Carter cost (2.1)  for the 

Thirteen Problem Instances  of Toronto Be nchmark Datasets For Different 

Constructive Approaches Reported in the Literature  

Problem  [1]  [2]  [3]  [4]  [5]  [6]  [7]  [8]  

car-s-91 (I)  7.10 4.97 5.45 5.29 5.08 5.03 5.18 5.08 

car-f-92 (I)  6.20 4.32 4.50 4.54 4.38 4.22 4.44 4.34 

ear-f-83 (I)  36.40 36.16 36.15 37.02 38.44 36.06 39.55 38.28 

hec-s-92 (I)  10.80 11.61 11.38 11.78 11.61 11.71 12.20 11.13 

kfu -s-93 14.00 15.02 14.74 15.80 14.67 16.02 15.46 14.42 

lse-f-91 10.50 10.96 10.85 12.09 11.69 11.15 11.83 11.43 

pur -s-93 (I)  3.90 - - - - - 4.93 5.74 

rye-f-92 7.30 - - 10.38 9.49 9.42 10.04 9.37 

sta-f-83 (I)  161.50 161.90 157.21 160.40 157.72 158.86 160.50 157.34 

tre -s-92 9.60 8.38 8.79 8.67 8.78 8.37 8.71 8.73 
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uta -s-92 (I)  3.50 3.36 3.55 3.57 3.55 3.37 3.49 3.52 

ute-s-92 25.80 27.41 26.68 28.07 26.63 27.99 29.44 26.24 

yor-f-83 (I)  41.70 40.77 42.20 39.8 40.45 39.53 42.19 40.38 

 

[1] -(Carter and Laporte, 1996), [2] -(Burke and Newall, 2004 a),  [3] -(Qu and 

Burke, 2007), [4] -(Asmuni et al ., 2009), [5] -(Abdul -Rahman et al ., 2009), 

[6] -(Burke et al ., 2010c), [7] -(Pais and Burke, 2010), [8] -(Abdul -Rahman et 

al ., 2011) 

 

 

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the 

Thirteen Problem Instances of Toronto Benchmark Datasets For Different 

Hy per-Heuristics Approaches Reported in the Literature  

Problem  [9]  [10]  [11]  [12]  [13]  [14]  

car-s-91 (I)  5.37 5.36 4.97 5.16 5.17 5.19 

car-f-92 (I)  4.67 4.53 4.28 4.16 4.32 4.31 

ear-f-83 (I)  40.18 37.92 36.86 35.86 35.70 35.79 

hec-s-92 (I)  11.86 12.25 11.85 11.94 11.93 11.19 

kfu -s-93 15.84 15.20 14.62 14.79 15.30 14.51 

lse-f-91 - 11.33 11.14 11.15 11.45 10.92 

pur -s-93 (I)  - - 4.73 - - - 

rye-f-92 - - 9.65 - - - 

sta-f-83 (I)  157.38 158.19 158.33 159.00 159.05 157.18 

tre -s-92 8.39 8.92 8.48 8.60 8.68 8.49 

uta -s-92 (I)  - 3.88 3.40 3.42 3.30 3.44 

ute-s-92 27.60 28.01 28.88 28.30 28.00 26.70 

yor-f-83 (I)  - 41.37 40.74 40.24 40.79 39.47 

 

[9] -(Kendall and Hussin, 2005a), [10] -(Burke et al. , 2007),  [11] -(Pillay and 

Banzhaf, 2009), [12] -(Qu and Burke, 200 9), [13] -(Qu et al. , 2009b), [14] -

(Burke et al. , 2010e) 

 

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the 

Thirteen Problem Instances of Toronto Benchmark Datasets For Other 

Different Impr ovement Approaches Reported in the Literature  

Problem  [15]  [16]  [17]  [18]  [19]  [20]  [21]  

car-s-91 (I)  5.10 4.50 5.40 5.20 6.60 4.60 4.80 

car-f-92 (I)  4.30 3.93 4.20 4.40 6.00 3.90 4.10 

ear-f-83 (I)  35.10 33.71 34.20 34.90 29.30 32.80 34.92 

hec-s-92 (I)  10.60 10.83 10.40 10.30 9.20 10.00 10.73 
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kfu -s-93 13.50 13.82 14.30 13.50 13.80 13.00 13.00 

lse-f-91 10.50 10.35 11.30 10.20 9.60 10.00 10.01 

pur -s-93 (I)  - - - - 3.70 - 4.73 

rye-f-92 8.40 8.53 8.80 8.70 6.80 - 9.65 

sta-f-83 (I)  157.30 158.35 157.00 159.20 158.20 156.90 158.26 

tre -s-92 8.40 7.92 8.60 8.40 9.40 7.90 7.88 

uta -s-92 (I)  3.50 3.14 3.20 3.60 3.50 3.20 3.20 

ute-s-92 25.10 25.39 25.30 26.00 24.40 24.80 26.11 

yor-f-83 (I)  37.40 36.53 36.40 36.20 36.20 34.90 36.22 

 

[15] -(Merlot et al ., 2003), [16] -(Yang and Petrovic, 2004), [17] -(Cote et al ., 

2005), [18] -(Abdullah et al. , 2007) [19] -(Caramia et al. , 2008), [20] -(Burke 

et  al. , 2010a), [21]-(Turabieh and Abdullah, 2011 a). 

 

The results presented in the above three tables are arranged 

according to the 13 Toronto datasets problem proposed by Carter et al.  

(1996). These results were obtained by some of the researchers using 

numerous techniques. Each column consists of the Carter cost (2.1) for 

each dataset in this Toronto benchmark problem.  

According to the Carter cost (2.1), we could say that the cost is 

actually the average penalty of the students spread in the examination 

schedule. An achievement of a zero cost timetable means that the 

timetable is of a very high quality, and we can imagine tha t every single 

student will have at least a five slotsõ gap between one exam and the next 

in the examination session.  

However, none of the costs obtained and reported in the 

examination scheduling research on the Toronto benchmark problem have 

a zero cost (as can be seen in the above three tables), which means that in 

real life some of the inconvenience is tolerated in order to achieve a 

shorter examination period.  
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In the three tables presented above, each bold value is the best 

value for each dataset rep orted among the researchers. Overall, the costs 

obtained are considered to be very encouraging, as the lowest Carter cost 

(2.1) obtained is 3.14 for dataset uta -s-92 (I). Here the value 3.14 is the 

value of the average penalty of the students spread in the  examination 

schedule.  

It is worth noting here, however, that the listed methods have a 

rather uneven performance. They perform well against some benchmark 

problems and less well against others. One important point to note when 

comparing the performance o f the various methods is that several of the 

best results have been obtained by methods that did not report any results  

for some datasets ; for example, for lse -f-91, pur -f-93 (I)  and rye -f-92.  

    

2.8 Pre -Processing Approach in the Examination 

Timetabling  

 

Based on the observations of Table 2-7 to 2-9, there are quite a 

number o f approaches that are unab le to produce results for certain 

benchmark  dataset s, which after analys is we can determine that the 

inability to produce feasible solution s for a problem is d ue to the size and 

complexity of the re lation ships among the entities in  the problem space. 

For example, b y analyzing datasets lse-f-91, pur -f-93 (I)  and rye -f-92, we 

observed that these problems have a high ratio value of number of exams 

against required number of slots  (as can be seen in the last column of 

Table 2-10). The ratios are 21.17, 57.60 and 21.13 for lse -f-91, pur -f-93 (I) 

and rye -f-92 respectively which means that on average these are the 
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minimum number of exams to be allocated per slot. The hi gher this value 

is, the harder it is to find the exams that are not conflicting among one 

another.  

Table 2-10: No of Exams to Required No of Slots Ratio  

Name of 

Dataset  

No of 

Exams 

No Of 

Students  

No Of 

Enrolm ents 

Conflict 

Density  

Required 

No Of 

Slots 

No of 

Exams to 

Required 

No of 

Slots 

Ratio  

car-s-91 (I)  543 18419 55522 0.14 32 16.97 

car-f-92 (I)  682 16925 56877 0.13 35 19.49 

ear-f-83 (I)  190 1125 8109 0.27 24 7.92 

hec-s-92 (I)  81 2823 10632 0.42 18 4.50 

kfu -s-93 461 5349 25113 0.06 20 23.05 

lse-f-91 381 2726 10918 0.06 18 21.17 

pur -s-93 (I)  2419 30032 120681 0.03 42 57.60 

rye-f-92 486 11483 45051 0.08 23 21.13 

sta-f-83 (I)  139 611 5751 0.14 13 10.69 

tre -s-92 261 4360 14901 0.18 23 11.35 

uta -s-92 (I)  622 21266 58979 0.13 35 17.77 

ute-s-92 184 2750 11793 0.08 10 18.40 

yor-f-83 (I)  181 941 6034 0.29 21 8.62 

 

 

We foresee that there is a need to minimize or reduce the 

complexity of the problem or we hypothesize  that what if we were to 

transform the pro blem into another problem where there is a possibility 

that the complexity of the existing problem can be degraded into simpler 

problems. To enable this, an understanding of the data is required, in line  
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with this notion we observe an approach by Thomas et al.  (2009) which 

tries to give a better understanding of the problem space to the timetable 

designer has a merit in which by understanding the correlation of all the 

entities in the problem space a solution can be generated.  

Thomas et al.  (2009) approached the timetabling problem by 

introducing a pre -processing stage that visualized the timetabling data. 

The researches were confident that the visualization will provide a new 

insight or analysis of the timetabling data that would help the timetable 

designer  and decision maker to formulate a feasible timetable. The 

researchers used Prefuse which is a Java -based extensible software 

framework for pre -processing to visualize the data. They provided five 

interaction techniques to the users to interact with the da ta, namely 

Selection, Explore, Encode, Filter and Connects. Selection, enables the 

marking of a particular data that can be further analysed. Explore, 

enables the visualization of the timetabling data to be interacted, showing 

a different perspective or co ncentrating only on a specific part of the 

problem space. Encode, enables the user to change the visual 

representation of the data. Filter, enables the user to add certain 

restrictions on the data to be visualized enabling the user to focus on 

certain part  of the data. Connects allows the user to view interconnected 

data within the problem space. The pre -processing stage provides 

additional interactions to the scheduler (person) on the interrelation or 

linkage of all the elements in the problem domain. The pre-processing 

stage through visualization enables the timetable designer to learn more 

about the data and with this knowledge it is hoped it would help the 

timetable designer to design a better timetable.  
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 There is also another approach by Gunawan et al.  (2008) which 

provides another insight where the pre -processing of data to generate new 

representation of information can be utilized within the algorithm to help 

in constructing a better quality timetable. Gunawan et al.  (2008) proposed 

a hybrid approach w hich combines Tabu Search and Simulated Annealing 

to solve the teacher and course scheduling simultaneously. The approach 

consists of three phases; the pre -processing stage, initial construction 

stage and the improvement stage. The initial construction sta ge 

concentrates on finding the initial feasible timetable.  

The researchers constructed new information which is the 

information on which teacher is willing to teach a particular course, 

resulting in a set of new data connecting a particular paper with the 

probable teacher. The information was generated from the preferences 

given by the teachers. The second information generated is the list of slots 

that a particular teacher prefers to teach which is given by the day and 

time period.  These two lists are gene rated and sorted based on the 

preferences set by the teachers.  

Gunawan et al.  (2008) reported that the pre -processing is done on 

the information of preferences provided by the teachers, which is actually 

considered as the soft constrains of the actual pro blem. The main problem 

(scheduling) is being solved using the greedy heuristics (similar to 

Gunawan et al.  (2007a)) without the assistance on the new information 

generated. This opens up a new avenue where the pre -processing can be 

conducted on the data re lated to the hard constraints. New information 

can be generated which will give a new representation that will enable the 

algorithm to understand the problem space.  
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What interests us, we observe that these two papers (Thomas  et al . 

(2009); Gunawan et al. (2008)) which touched on pre -processing, did that 

specifically and without the intention to want to alter the data 

representation of the problem space. Hence, the intention that we have is 

to provide an alternative methodology that transforms the problem s pace 

into a different representation that could open -up new avenues or simplify 

the problem to a more manageable and deterministic solution. This is 

with the understanding that many of the researchers claim that the exam 

timetabling is an NP -complete probl em which requires huge amount of 

resources to fully explore the entire search space of a feasible solution and 

more over to find the best solution within these feasible timetables.  

 

2.9 Important Insights from the Scheduling  

Literature and Motivations for the Research  

 

Despite many methods having been proposed to date to solve the 

examination scheduling problems, various findings have concluded that 

there is no single heuristic that is able to solve all scheduling problems 

effectively (Burke et al. , 1994). Meta -heuristics approaches - for example, 

Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS) 

etc., which were believed to generate promising results - were improved 

further through the introduction of hyper -heuristic approaches (Qu et al. , 

2009a). 

Notwithstanding the advantages and capabilities of the many 

methods reported in the literature, we are aware that the results for some 

problems are not easily reproducible because most of the algorithms 
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depend on some random number generation. These  algorithms deploy 

random selection between alternative choices during the optimization 

process. This means that a simple change in the generation of random 

numbers may affect very significantly the direction of the optimization 

process. As a result, the r andomness generates different results. This 

makes the results only statistically comparable. Since the results are hard 

to reproduce, it is difficult to determine whether they are optimal or not.  

A huge volume of publications have reported the investigati on and 

refinement of hyper -heuristics. Various methods concerning the design 

and selection of heuristics and hyper -heuristics have been proposed and 

evaluated. On one hand, there have been various improvements in the 

examination schedules produced using th ese methods. On the other hand, 

this suggests that the results generated in this way cannot be seen as 

definitive.   

We have also learned from the background study that some 

researchers have classified the examination scheduling problem as an NP 

complete pr oblem (e.g. Cooper and Kingston, 1996; and Even et al. , 1976). 

An NP complete problem is a problem which cannot be resolved to a global 

optimum in a reasonable amount of time. Currently, with the flexibility of 

the studentsõ enrolments, there was a great i ncrease in size of the 

examination timetabling problem, which also has increased the 

complexity of this problem  (McCollum , 2007). As the examination 

scheduling problem is classified as an NP complete problem, it can be 

understood that the resources needed to solve the problem grow very 

rapidly with the size of the problem. Hence, some problems cannot be 

solved even on the fastest computers, and in the examination scheduling 
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context, it means that the optimal schedules are not generated 

successfully and one has to accept sub-optimal (but feasible) solutions.   

It is worth emphasizing that the examination scheduling problem 

represents a challenging computational problem due to the strong 

interactions between the many -to-many relationships between the data of 

students and exams. The challenge and complexities of the problem 

increase when most of the universities allow flexibility for the students to 

register on modular courses across faculties (Burke et al. , 1994). The 

increasing size of studentsõ enrolments and different choices of available 

courses increases the challenge and complexity of this real -world problem 

(McCollum , 2007). 

 

From the background study we can learn that some methods that deploy 

random selection between alternative choices during the optimiz ation 

process failed to reproduce the solutions obtained previously. This is 

because a simple change in the generation of random numbers may affect 

very significantly the direction of the optimization process, thus generating 

different solutions. This mean s that the results produced with methods 

deploying random selection are only statistically comparable and cannot 

guarantee the quality of every individual solution.  

 

All of the above scenarios and phenomena create motivations for 

further research. In gene ral, the literature review and background study 

have provided insights into the following:  
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a) a new approach to analyzing the complex system by looking at 

different levels of abstraction;  

b) abstraction of essential features in order to simplify the data 

used in scheduling by doing pre -processing of data and 

constraints;  

c) propose a definite step (a constructive approach) to schedule 

the exams to ensure the method can reproduce the schedule at 

any time;  

d) sub-dividing the problems into smaller sub -problems in order to  

reduce the NP complexity of the examination scheduling 

problems as described in the literature, and therefore increase 

the efficiency in terms of the computational time;  

e) the exploration of the search space that is guided by one 

heuristic which avoids e xhaustive exploration of the search 

space. 
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CHAPTER 3  

3  

Domain Transformation 

Approach to Examination 

Scheduling  

 

This chapter presents the proposed framework for solving examination 

scheduling problems. We start by giving an overview of the Domain 

Transformation Approach ð the approach that transforms the original 

problem domain into different and smaller domains which are easier to 

manage. We provide the general framework proposed in this study, which 

consists of several main stages; namely, the pre -processing of data, 

scheduling and optimization. Each step is then elaborated in greater detail 

by providing the algorithm, its essential elements and its computational 

complexity.  

 

3.1 Domain Transformation Approach ð 

Overview  

 

Classical description of exam ination scheduling implies a search in a large 

solution space which is typically accomplished with the aid of heuristics to 

control the exploration of the search space. We propose that the 

transformation of the problem domain is an effective methodological  

approach to dealing with complex examination scheduling problems. In the 

proposed approach, we define alternative data structures that capture the 
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essential dependences in the examination scheduling problem. By 

performing an appropriate pre -processing of the original student -exam 

data into suitable data structures, we can map the original problem 

expressed in the multi -dimensional space of exams and students into a 

space with a reduced dimensionality of exams and exam -slots. We will 

refer to this approach to solving the scheduling problem as the Domain 

Transformation Approach.  

Domain Transformation Approach therefore could be defined as an 

approach whereby a problem is transformed into a simpler problem 

expressed in terms of different variables from the ori ginal problem 

description. Examples of the domain transformation approach in other 

application areas include the subdivision of a problem domain into 

multiple sub -problems (e.g. the Danzig -Wolfe decomposition for solving 

linear programming problems), trans formation of problem variables (e.g. 

the Fourier Transform, employed to transform signals between time or 

spatial domain into frequency domain) and the  transformation from 

continuous to discrete functional description (e.g. the Z -transform 

converting time  domain signals into discrete domain of trains of pulses), to 

mention just a few prominent examples.  

The proposed domain transformation of the examination scheduling 

focuses on the pre-processing of constraints prior to the generation of a 

feasible timeta ble. This is done through the abstraction of essential 

features of the exam scheduling problem from the original student -exam 

data. This data abstraction process constitutes a significant methodological 

contribution of this study, as it enables subsequent optimization of the 

examination schedule without the need to refer to the voluminous student -
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exam data in the course of the optimization.  One example of a pre -

processing is the identification of the clashing exams. This information will 

ease and expedite the scheduling process later because less permutations 

are needed to obtain this information since it is readily available. Unlike 

other approaches, without employing pre -processing, a lot of permutations 

are needed, since this information is implicit in d ata. Other examples of 

pre-processing will be discussed in further detail in this chapter later.  

This approach was inspired by insights from previous studies on 

industrial process optimization (Bargiela , 1985; Argile et al ., 1996; 

Peytchev et al ., 1996; and Bargiela et al ., 2002) and has been formalized as 

a Granular Computing methodology (Pedrycz et al. , 2000; Bargiela and 

Pedrycz, 2002; Bargiela et al. , 2004; and Bargiela and Pedrycz, 2008). 

Granular Computing is an emerging conceptual and computing 

parad igm of information processing methodology (Pedrycz et al ., 2000), 

(Bargiela et al ., 2002), (Bargiela et al ., 2004), (Bargiela and  Pedrycz, 2008). 

In the concept of Granular Computing, the key element is multiple levels 

of information processing sometimes c alled hierarchical processing. Each 

level will perform different types of processing that will result in different 

types of information representation or meaning. In general, Granular 

Computing can be viewed as human inspired paradigms of computing and 

inf ormation processing (Pedrycz et al. , 2000; Bargiela and  Pedrycz, 2002; 

Bargiela et al ., 2004; Bargiela and  Pedrycz, 2008). 

According to Granular Computing concept, the information 

processing will create information granules and this process is known as 

Inf ormation Granulation ( Bargiela and  Pedrycz, 2002). According to 
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Merriam -Websterõs Dictionary (http://www.merriam -webster.com), a 

granule  is defined as òa small particle; especially:  one of numerous 

particles forming a larger unitó.  These information gran ules, with regard 

to Granular Computing concept, are collection of entities that are arranged 

together due to some criteria, and normally they are central to the 

abstraction processes in solving many tasks.  

Information Granulation ( Bargiela and  Pedrycz, 2002) serves as an 

important medium to simplify problem that needs to be split into smaller 

sub tasks. It provides an abstraction mechanism that reduces the overall 

conceptual burden in the original problem space. By having different sizes 

or representation s of the information granules, certain amount of details 

can be hidden during the problem solving. This offers advantage in terms 

of reducing the complexities  of the problems. As we can imagine, the 

consistent existence of some details are sometimes unwelc ome because 

they complicate things and therefore they need to be hidden.  

As far as the examination scheduling problem is concerned, 

Granular Computing problem solving strategy could be applied 

successfully to produce feasible and good quality exams schedul es. The 

systematic approach which involves information processing will create new 

data representation which will provide valuable and meaningful 

information that could definitely ease the scheduling task.  

Granular Computing in scheduling involves analyzing  or 

representing the scheduling problem at various levels of abstraction. For 

example, at the fine resolution we may deal with individual students 

taking individual exams (which is a standard problem definition) as 
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illustrated in Figure 3.1, at the coarser resolution we deal with classes of 

exams (for example non -conflicting exams) and formalise the problem 

description using these classes as illustrated in Figure 3.2.  The 

implication of this is that we deal with several complementary problem 

descriptions at different levels of generality or accuracy. The more general 

descriptions serve to facilitate an approximate problem solution in a 

smaller search spac e and more detailed representations preserve the 

possibility of refinement of the solutions. This approach contrasts with the 

standard, detailed level of problem representation which requires 

deployment of various heuristic methods to cope with computation al 

complexity.  

 

Figure 3.1: Illustration of an Example of a Standard Examination 

Scheduling Problem (Fine Resolution Level)  
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Figure 3.2: Illustration of Cla sses of Exams -  Group of Non -Conflicting 

Exams With the Students Enrolled (Coarser Resolution)  

 

The key hypothesis of this thesis is that the pre -processing of initial 

problem data can lead to a transformation of the scheduling problem into a 

new solution  space in which the problem is solved more easily. This 

aggregated data from the modified data space which are grouped 

appropriately will be much easier to handle, as opposed to dealing with the 

original data, as has been done in many previous studies .  

We also argue that after applying pre -processing, scheduling could 

be done more efficiently, generating reproducible results.  
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3.2 The Flow of the Proposed Approach  

 

This research is proposing a different approach from the work done by 

others who utilized pre -processing methods; for example, Gunawan et al . 

(2007b), who used a hybrid algorithm which consists of three phases: (1) 

pre-processing, (2) construction, and (3) improvement in the teacher 

assignment -course scheduling problem. The pre -processing phase in  their 

work involves assigning teachers to courses by sorting them in descending 

order, based on their preferences towards the course.  

In the approach advocated in this thesis, the aim is for the pre -

processing method on the timetable datasets to be emplo yed before the real 

scheduling process is undertaken. Possible data will be combined in the 

datasets in such a way that will satisfy the hard constraints imposed on 

the timetable. These combinations include the courses, rooms and 

students. Each pre -processing stage will lead to a richer representation 

and collection of data containing more information to make the final 

scheduling easier. The revelation of dependencies existing within the data 

at the aggregated level, which may be difficult to handle at the detailed 

level, is the fundamental rationale behind the information granulation and 

subsequent Granular Computing ( Bargiela and  Pedrycz, 2002). It is 

postulated that the pre -processing will improve the efficiency and ease of 

the scheduling task because onl y feasible solutions will be available to 

work with, since the pre -processing eliminates all unfeasible timetables 

from the solution space. The flow of the proposed work is given below:  
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Figure 3.3:  The Flow of the Proposed Approach  

 

The steps of the proposed work in creating feasible and quality 

examination schedules are : standardization and verification of the problem 

description data, pre -processing, scheduling and lastly, timetable 

optimization, as  illustrated in Figure 3.3.  

The above figure clearly shows that in order to produce feasible and 

good quality examination schedules, the very first step is to do a 

standardization and verification of the  original data files (timetabling 

problem). Once this is done, pre -processing of data files will follow to 

generate meaningful aggregated data construct that will ease the next 

task which is the scheduling. In the scheduling stage, exams will be 

assigned to slots, which always ensure  the feasibility of the schedules.  

Despite the feasibility of the schedules, the initial orderings of exams 

produced by the scheduling stage might not be optimal  (because it might 

not fulfil  certain soft constraints) , therefore  this requires a separate 

deployment of optimization process to further improve the quality, hence 

the need of the last stage, the optimization. In this final stage, the 

schedules cost will be minimized via certain procedures.  

Scheduling 

Timetable 
Optimization 

Data Standardization 
And Verification 

Pre-processing 
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3.2.1  Standardization and Verificat ion of the Problem 

Description Data  

 

The first step in this proposed approach is to perform the standardization 

and verification of the problem description data. The standardization and 

verification of data are done on the examination scheduling benchmark 

datasets retrieved earlier that  are freely made available to the public over 

the internet.  These data will be used to produce the information shown in 

Figure 3.9, Figure 3.10:  and Figure 3.11. 

In the early stage, the datasets that were used are the benchmark 

exam scheduling data for the University of Nottingham, semester 1, 1994 ð 

95 and University  of Toronto, as presented in the previous chapter. The 

files contain information pertaining to students, exams, enrolments and 

data (other data and constraints). This information will be retrieved and 

assigned to a data representation format that would be easy for future 

processing. At the same time, there is the concern of Lewis (2008) 

regarding the disadvantage of heavy reliance on certain benchmark 

datasets. Consequently, the proposed approach has also been tested on 

other benchmark datasets from the Int ernational Timetabling Competition  

2007 (ITC 2007). 

The datasets produced and made available by the researchers come 

in various representations and formats. The variations come from the 

representations of information about courses, students and classes made  

available in the datasets. For example, for University of Nottingham 

dataset, there is a student -exam enrolment  data representing a list where 

each row contains a ten characters alphanumeric student ID (or code) and 
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eight characters exam code as depicted in Figure 3.4. Each student will 

have a number of rows depending on the number of exams the student has 

enrolled. For instance, the first five rows of data in the figure represents 

that the student with s tudent ID ôA890186790õ was enrolled for five exams 

with exam code: ôR13001E1õ, ôR13006E1õ, R13016E1õ, ôR13021E1õ and 

ôR13022E1õ. 

Unlike the Nottingham dataset, for the Toronto dataset, the 

enrolment  file consists of rows containing a variable -length list o f four 

digits exam code.  Each row represents exams enrolled by a particular 

student.  This can be seen in Figure 3.5. If we observe this figure, we can 

see that the student code is not supplied in the fi le. Based on the list given 

in this figure, we can view that the first student in the list (assume that 

student id = ô1õ) is enrolled for one exam only  which is exam with the code 

ô0174õ. The other two students, in the second and third row were enrolled 

for exam ô0329õ and ô0332õ respectively.  The list continues with the fourth 

student enrolled for exam ô0377õ, ô0378õ, ô0392õ and 0406õ, and the list 

continues for other students in the dataset.  I t i s worth highlighting here 

that these two data files are tota lly in different format, thus need to be 

standardized and verified in the initial stage.  

Some researchers represent the courses in the form of course codes 

and some in the form of unique numbers ð this is also the case with the 

information about students a nd classes. Initially, a solution was developed 

for one dataset with the intention to later provide a more generic 

algorithm that would cater for various kinds of datasets formats and 

arrangements.  
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Figure 3.4: Sample of Enrolment  Data from the University of Nottingham 

Dataset File  
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Figure 3.5: Sample of Enrolment  Data from the Toronto Dataset File  

 

Recall that we have also decided to test our approach on the 

ITC2007 dataset. In this particular dataset, in contrast to the Toronto 

dataset which is in the perspective of students, the ITC2007 is however is 

in the perspective of exams. A sample of the ITC2007 data file is 

illustrated in Figure 3.6. Each row represents an exam, where it consists of 

a two or three digit numbers showing the duration of the exam in minutes. 

The information in each row is then followed with a variable -length list of 

a one digit up until four digits  student code for all students enrolled for 

this exam.  
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Figure 3.6:  Sample of Enrolment  Data from the ITC2007 Dataset File  

 

In the above diagram, by assuming that both the first and second 

row in  the list represent exam with 180 minutes duration, if we observe 

these two rows, we could see that there are 8 students (same students) 

with student ID: ô312õ, ô752õ, ô760õ, ô768õ, 858õ, ô879õ, ô1920õ and ô1987õ were 

enrolled for these two exams.  

The main  algorithm, as presented below, was designed to utilize a 

specific data type to represent the scheduling data. It was decided to use 

matrix as the main data type to represent all the information pertaining to 

the scheduling problem in the solution space. S ince the matrix data type is 

highly adaptable in terms of the complexity of the representation in the 

sense that it can easily be converted from a single dimension to two 

dimensions and so on, this robustness only requires minimal changes in 

the actual pro gram coding to be implemented. In this study a few matrix 
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or data types were identified that will be used to keep the initial data and 

also processed data within the system.  

The main data type is the StudentExamList matrix  that represents 

the relationship  between a student and all the exams that the student will 

be required to sit. It is a matrix of dimension NumberOfStudents x 

MaxNoOfExamForAStudent + 1 . This data structure will be used to 

generate other data representations of the problem space. Each row  index 

will represents a student, the first column will contain the total number of 

exams that the students have registered. Subsequent column will contain 

the examination index. The StudentExamList  will be supported by the 

ExamLookupIndex  and StudentLooku pIndex . The ExamLookupIndex  is a 

matrix of NumberOfExam x 2 . Each row in the ExamLookupIndex  will hold 

information for an exam. The first column contains the actual exam code 

or name and the following column will contain the number of unique 

students sitti ng for the exam. Similar to ExamLookupTable , the 

StudentLookupTable  holds information for a student. Each row represents 

a student. The first column stores the studentõs actual ID Number and the 

second column holds the number of exams the students will be sitting in. 

The relations of these data structures can be seen in the following 

algorithm.  

The algorithm to alleviate the initial problem of dataset and format 

variety is by providing an algorithm or function that would convert a 

dataset format to a standa rd format that will be used as an input to the 

pre-processing stage. The algorithm consists of three subroutines each for 

a particular dataset, namely Nottingham, Toronto and ITC2007 dataset.  
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The Nottingham subroutine will extract information from the inpu t 

file.  The Nottingham input file consist of rows with two column of 

information, The Student ID and the Exam ID  each of this piece of 

information will be converted to an integer value reference. The unique . 

reference id for an exam and student will be use d to populate the 

StudentExamList . While placing the exam id in the StudentExamList  th is 

subroutine will also keep the count of exams a student is enrolled and the 

number of students sitting for a particular  exam. Once the placement of all 

the information is completed, a verification function will be called to verify 

all the information in the StudentExamList  is exactly the same is the 

information in the original file. The verification will also check if there are 

inconsistencies in the input file.  

The Toronto subroutine  is responsible to read and convert 

information from the input file to the format that is required by the 

scheduling algorithm. Each row in the T oronto input file is the list of 

exams a student  is enrolled in which  is deliminated by spaces. T he Toronto 

file does not provide any information on the student id thus requiring the 

subroutine  to assume that the first list of exams belongs to student with id 

equals to 1 and so on until the end of the file. The algorithm will place the 

exam id on the StudentExamList , keeps the tally for the number of exams 

a student is taking and the number of students sitting for a particular 

exam. 

The ITC 2007 subroutine on the other hand will have to read and 

filter information in the input files as part of the data is not being used in 

our implementation.  Each row in the ITC 2007 dataset file has the 

duration of an exam and the list of student id enrolled in the exam 
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deliminated by a comma. Since the dataset does not provide any exam id, 

the subroutine will assume th at the first entry in the dataset belongs to 

exam id equals  to 1 and so on. Similar to the previous two routines , this 

routine will also populat e the StudentExamList , keeps track of the number 

of exams a student is enrolled in and tally the number of stude nts sitting 

for a particular exam.  

 

Algorithm 1  

If Nottingham Dataset 

 Open the Data File 

 While not End Of File 

Read a line from file to Input 

Get FirstToken from Input  //StudentID 

Get SecondToken from Input  //ExamID 

i = -1 

j = -1 

Find Index of SecondToken in ExamLookupIndex assign to i if 

found 

Find Index of FirstToken in StudentLookupIndex assign to j if 

found 

If j = = -1 

   LastSLI = LastSLI + 1 

   StudentLookupIndex[LastSLI] = FirstToken 

   j = LastSLI 

EndIf 

If  i = = -1 

    LastELI = LastELI + 1 

     ExamLookupIndex[LastELI] = SecondToken 

     i = LastELI 

    StudentExamList[j][(  StudentExamList [j][0])+1] = i 

StudentExamList [j][0]= StudentExamList [j][0]+1 

Else  

     StudentExamList [j][(  StudentExamList [j][0])+1] = i 

    StudentExamList [j][0]= StudentExamList [j][0] ]+ 1 

EndIf 

UpdateLookupTable(StudentLookupIndex,j, 

ExamLookupIndex,i) 

 

 End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 

If Toronto Dataset 

Open the Data File 

 While not EndOfFile 
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  i = i+1; 

                           j=0; 

  Read a line from file to Input 

While Input not empty 

      j=j+1 

      Get FirstToken from Input //Space Deliminated 

      StudentExamList [i][ j]=FirstToken  

         UpdateLookupTable(StudentLookupIndex, i, 

ExamLookupIndex, FirstToken) 

 

End While 

StudentExamList[i][0]=  j 

 End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 

If ITC2007 Dataset 

Open the Data File 

 i = 1; 

 While not EndOfFile 

    Read a line from file to Input 

   Get FirstToken from Input  //Exam Duration,not used 

     j = 0 

    While Input not empty 

         Get FirstToken from Input  //Comma Deliminated 

        j= j+1 

     StudentExamList[FirstToken][  

StudentExamExam[FirstToken][0] ] = i 

     StudentExamExam[FirstToken][0]=  StudenExamList 

[FirstToken][0]+1 

      UpdateLookupTable(StudentLookupIndex,FirstToken, 

ExamLookupIndex,i) 

 

  End While 

 i = i + 1 

End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 
 

 

Figure 3.7: Algorithm for Retrieving Enrolment  Data, Standardization and 

Verification  
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3.2.2 Pre -processing  

 

A key step in the proposed exam scheduling method is the pre -processing 

of constraints prior to the generation of a feasible timetable. This is  done 

through the abstraction of essential features of the exam scheduling 

problem from the original student -exam data.  

One example of the information obtained from the pre -processing is 

the identification of the clashing exams. Due to the need to ensure the 

feasibility of timetables, typical timetabling algorithms check if exams do 

not clash every time an exam is scheduled. In other words, for 

conventional approaches, without the pre -processing stage, the clashing 

information is implicit in data; thus, a lot of permutations requiring a lot 

of time need to be done in order to create a feasible timetable. This 

problem can be avoided using the approach of this study. The data 

structure is part of the mechanism to ensure that the feasibility of all 

generated schedules is maintained. By devising a data structure combining 

non-clashing exams into separate entities one can avoid subsequent 

feasibility checks. The data structure enables easy lookup of exams that 

can be scheduled together. We take an example of exam A, if exam B is in 

the non -clashing list of exam A, then they can be scheduled together. 

Otherwise there is at least one student that is enrolled in exam A and 

exam B. Hence, this approach deals only with feasible solutions.   

The pre -processed data can also be utilized later to find another 

information in the pre -processing stage; for instance, the non -clashing 

exams information , all exam s will have its corresponding non -clashing 

list . To find the non -clashing exams, we just need to focus solely on the 
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clashing exams information logically, by finding the inverse of the clashing 

exams. This means that instead of doing a lot of cross -checking and cross-

referencing across many files, we are only employing the information that 

we obtained through the previous pre-processing. At each stage of the next 

level of pre -processing we will be doing a hierarchical processing that will 

always provide us with richer information. The types of pre -processing 

mentioned above are just examples. Other types of pre -processing and data 

dependencies will be considered to further enrich the existing information 

in order to minimize and simplify the scheduling process, thereby creating 

a valid and optimal exam timetable.  

The pre -processing stage has generated the following informati on: 

1. Number of students for each exam.  

2. List of students in each exam.  

3. List of clashing exams for each exam.  

4. List of non -clashing exams for each exam.  

5. Generation of the exam -conflict matrix.  

6. Generation of the conflict chain.  

7. Generation of the spread matrix.  

 

Generation of the Exam Conflict Matrix  

 

The first pre -processing step is to determine potential clashes between 

examinations and to count the number of students causing these clashes. 

This information is used to construct an exam conflict matrix which is a 

square matrix of dimension equal to the number of exams. Entries in this 

matrix at position (i,j)  represent the number of students causing conflict 
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between exams i and j . The exam conflict matrix is generated by 

incrementing the value at position (i,j)  by 1 for each student taking exams 

i  and j  when the student -exam list is traversed. The matrix will contain  a 

negative number of students value  (-s) at position i,j  if there are s students 

causing conflict between exams i  and j. The exam conflict matrix is a static 

data representation of the problem space. Information contain herein is 

fixed, which represent the inter relation between an exam to another exam. 

It forms the reference for allocation, optimization and calcula tion of the 

schedules quality (C arter cost (2.1)). The algorithm to generate this matrix 

is given in Figure 3.16. 

 

Generation of the Conflict Chains  

 

The clashes between exams are static information or relation which will 

not change in a pro blem space. By this we mean that the exam clashes will 

only change with an addition of a student taking both exam s or all the 

students taking the two exams drop or unregister for either one of the 

exam. A clash between two exams is  a situation where there is one or more 

students taking the two exam s, thus implies that the two exam s cannot be 

scheduled concurrently . This representation provides useful information 

granules that can be utilized in the scheduling process . Based on these 

information granules we determine the minimum number of time slots 

that are necessary for scheduling the given set of examinations. We refer 

to this stage as the construction of conflict chains.  

The algorithm deployed at this stage can be summarized as follows:  



66 
 

1. Initiate the a lgorithm by allocating all exams to time slot one.  

2. Select the first exam as òcurrentó and initiate the counter for the 

current conflict chain.  

3. Label the current exam as òallocated to the current chainó and note all 

of the exams that are in potential conflict with the current exam.  

4. If the list of potentially conflicting exams is non -empty, re -allocate 

those exams to the next available time slot. Otherwise, label the current 

chain as complete and proceed to Step 6.  

5. If the list of potentially confl icting exams is non -empty, select the first 

exam from the list and repeat from Step 3 with the currently selected 

exam. 

6. Check if all exams allocated at Step 1 are belonging to one of the 

conflict chains; if YES, then the algorithm terminates; if NO, the n the 

conflict chain counter is incremented and the unallocated exam is taken 

as òcurrentó for processing, starting from Step 3. 

Figure 3.8: Algorithm to Generate Conflict Chains  

 

In th is section we will ill ustrate the generation of conflict chain s 

based on an example data. Assuming that Figure 3.9 is the student -exam 

list that was generated after the standardization and data retrieval phase. 

We are using four (4) students that have enrolled in total of 7 exams. The 

exam-students l ist generated will be as in Figure 3.10.  

This  information will be used to generate the Exam Conflict Matrix, 

resulting in a conflict matrix in Figure 3.12 . Note that the content s of the 

Exam Conflict Matrix are negative values. Each value is derived from the 

number of students that enrols  in an exam from the x -axis and the y -axis. 
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Example we have two students taking exam E1 and E24 which is student 

A and B.  

The conflict chain s generation  as illustrated in Figure 3.1 3 starts by 

assigni ng all the exams to the first slot (i .e. slot number 1). Next the 

algorithm will traverse the exam list that has been assign to slot 1 . It will 

start with the first exam and marking it as assign to slot 1. It will then 

check all other exams in slot 1 again st the accepted exam to determine if it 

clashes (utilizing the exam clash list in the process). E1 has been marked 

as accepted and the algorithm will check E1 with the rest of the content of 

Slot 1. E24 is in the clash list of E1 thus marked as clash and i t will be 

shifted to the next slot (slot 2) in the shifting phase , same goes to E300, 

E45 and E60.  

Upon completion of exam E1 inspection , the algorithm will mark 

the second exam which is still unmarked or not allocated;  the slot still 

contains E512 and E73 .  E512 is marked as accepted and the algorithm 

will inspect  E512 against E73 which will result in marking E73 as clash 

and to be moved to the next slot. Upon completion of E512  inspection  the 

algorithm will mark another exam in S lot 1  as accepted, however Slot 1 

currently does not contain any exams unallocated, hence marking the 

completion of the checking phase.  

In the next phase all exams that w ere marked as òto be shiftedó will 

be shifted to the second slot, the exams are E 24, E300, E45, E73  and E60. 

The checking cycle continues by accepting E24 and evaluating its clash 

with ot her exams in S lot 2. E300 and E4 5 will be mark ed as to be shifted . 

E73 will then be marked as accepted and E73 clash list will be inspected 
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and no exam is being marked as to be shif ted. Finally E60 will then be 

marked as accepted and E60 clash list will be inspected and no exam is 

being marked as to be shifted. In the subsequent shifting phase , E300 and 

E45 are being shifted and the process continues until all the exams are 

accepted.  

Once the process of generating conflict chain s has been completed, 

the algorithm will check the maximum number of slots obtain ed against 

the maximum slot required for a dataset. If the value of current slot 

configuration is lower than  the maximum slot re quired, the exam in the 

last slot  will be separated to create another slot as illustrated in Figure 

3.13 (After N Process). The final exam to slot allocation is depicted  in 

Figure 3.14 . 

 

Figure 3.9: An Example of a representation of Student -Exam List  
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Figure 3.10: Exam-Students List Generated Based on the Student -Exam 

List  

 

Figure 3.11: Exam -Clashes List  
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Figure 3.12: Illustration of Exam -Conflict Matrix  
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Figure 3.13: Diagram Illustrating the Slot Alloca tion Process 
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Figure 3.14: Diagram Illustrating Exams Allocated To Slots  

 

 

Figure 3.15: Conflict Chains Generated  

 

The outcome of the above algorithm is a set  of conflict chains that 

represent mutually dependent exams that need to be scheduled in 

different time slots in order to avoid the violation of hard constraints  

(Figure 3.14) . However, the algorithm implies that it is possible to have 

one exam belonging t o more than one conflict chain (although the 

algorithm will ensure that the allocation of this exam to the time slot is 

consistent in both chains). For this reason we perform the additional step 

of merging these conflict chains, which happen to have common  exams. 
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The merged conflict chains represent independent subsets of the 

examination set that can be dealt with one at a time.  

 

Generation of the Spread Matrix  

 

Besides generating the independent conflict chains, as outlined above, the 

number of students wh o take exams allocated to time slots that are 1, 2, 3, 

4 and 5 time slots apart was evaluated. Since we are dealing with 

information granules that represent a potential conflict between all exams 

in one time slot and all exams in another time slot, regardl ess of what the 

actual time slot numbers are, we create a framework for efficient 

optimization of the cost function (measuring the quality of the timetable). 

The following will describe the proposed scheme for renumbering the time 

slots using the backgroun d knowledge about the structure of the cost 

function. This stage will be referred to as maximizing the spread of 

examinations.  

Using the exam conflict matrix information together with initial 

grouping of exams information through the early pre -processing stage, the 

spread matrix is then generated. The spread matrix (Rahim et al. , 2009) is 

a square matrix of dimension S, where S is a number of slots. Entries in 

the spread matrix at position (p,q) represent the number of students who 

take an exam from both sl ot p and slot q. The matrix is symmetrical with 

diagonal elements being omitted because students can take only one exam 

in any given exam slot. The spread matrix is created by incrementing the 

value at position (p,q) by 1 if exam p and exam q are not group ed together 

in the early allocation process (meaning they are clashing).  
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The pre -processing of the original student -exam data into the exam 

conflict matrix and the spread matrix pays dividends in terms of 

minimizing the subsequent cross -checking and cross-referencing in the 

original data in the optimization process, thus speeding up the scheduling 

task. The essence of pre-processing is summarized by the pseudocode in 

Figure 3.16. 

Algorithm 2  

Read student-exam list 

Initialise exam-conflict matrix to zero 

Initialise spread matrix to zero 

Initial allocation of exams to slots  

Read exam-to-slot allocation vector 

For i=1 to number-of-students 

  For j=1 to number-of-exams-of-student-i -1 

   For k=j to number-of-exams-of-student-i 

    Increment entry exam-conflict(student-exam(j),student-exam(k)) by 1 

     If exam-to-slot(student-exam(j))/=exam-to-slot(student-exam(k)) 

 THEN 

     Increment matrix element spread(j,k) by 1 

    End 

   End 

  End 

End 

 

Figure 3.16: Algorithms for Pre -Processing 

The pre-processing stage is one of the biggest contributions towards 

solving and minimizing the search space. In the approach that is proposed 

and implemented in this study, the gr anulation of the problem space was 

introduced using the exam -conflict matrix, spread matrix and exam -to-slot 

vector to simplify the problem and provide an algorithm which is not NP 

complete to solve the problem. The main computational component in the 

algorithm is the outer loop which iterates through the student list, l  which 

ranges between 611 to 30032 based on the three benchmark datasets used 

in this study as can be found in Chapter 2 . For each of the students there 

is an inner loop to create a permutat ion of the exams that the students are 
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taking, m with itself to create the exam -conflict matrix and spread matrix.  

The value of m has a limitation, which is actually the maximum number of 

exams a student can enrol  in a particular semester.  By assuming tha t one 

exam is equivalent to a one credit hour, a worst  case scenario, a student 

will enrol  for a maximum of 25 exams. The number of exams  m is selected 

from a pool of exams ranging from 81 to 2419 based on the benchmark 

datasets used in this study.  The complexity of the algorithm can be 

simplified to O(l x m x m)  = O(lm 2). Within the problem domain when l  is 

increased its relative value towards m is huge making m irrelevant. The 

value of m can be neglected due to the fact that m has a limit to its value , 

which is very small compared to the number of students l  when it grows. 

Thus, the complexity of the algorithm is simplified to O(l).  

The pre-processing of data and constraints from the original problem space 

will provide important information granules which  in turn provide 

valuable information for scheduling. The new aggregated data generated by 

the pre-processing stage, i.e. exam conflict and spread matri ces, will 

minimize the subsequent cross -checking and cross-referencing in the 

original data in the optim ization process, thus expediting the scheduling 

process. 

 

 

3.2.3 Scheduling  

 

After the pre -processing of data is completed, the next step is the 

scheduling process. This is when the initial allocation of exams to slots is 

done, i.e. grouping exams that are not conflicting in a group. In this study, 
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there are two methods for scheduling; the first is via the conflict chains 

generation and the second is via the allocation method.  

 

3.2.3.1 Scheduling for Uncapacitated Problems  

 

Scheduling will be done using the derived info rmation from the pre -

processing stage. The timetable generated at this stage is based on pre -

processed data; therefore, it will always fulfil the hard constraints.  

The generation of a feasible solution is achieved using an allocation 

method which is based on the standard Graph Colouring Heuristic 

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and Powell, 

1967), (Laporte and Desroches,1984), (Burke et al. , 1994c), (Carter et al ., 

1994), (Joslin and Clements, 1999), (Burke and Newall, 2004 a), (Asmuni et 

al ., 2007), (Abdul -Rahman et al ., 2009), (Kahar and Kendall, 2010), which 

is used to generate the allocation of exams to time slots. This method 

allocates exams by placing exams with the highest conflicts first; it then 

moves to other exams wit h lower conflicts. This is based on the principle of 

an early allocation of those exams with the highest number of conflicts to 

the available time slots. During this process, the number of conflicts of 

exams which have not been scheduled yet is recalculate d to reflect the 

latest updated status of exams. This means that all unallocated exams are 

taken into consideration in every iterative step, rather than being 

processed sequentially.  

During the allocation of exams to slots, there will always be two 

types of slots: empty slots and non -empty slots. Empty slots are the slots 

are not yet been assigned any exams, where as non -empty slots are the 



77 
 

slots that already have exams been assigned to them. We have four 

preferences for allocation determination which are: assigning conflicting 

exams to non-empty slots; assigning conflicting exams to empty slots; 

assigning non -conflicting exams to non -empty slots; and assigning non -

conflicting exams to empty slots. These have the values of 0.4, 0.3, 0.2 and 

0.1, respectively . The higher the value, the higher the preference for 

allocation.  

Any unused slots are removed and provide a buffer -space for 

subsequent optimization. The output is an allocation flag, exam -to-slot 

vector which contains the slot numbers for all exams. An allocation flag is 

a single dimensional array or also known as a column vector of dimension 

[number of exams x 1] where each value in the vector corresponds to the 

slot number where each exam in problem is assigned.  At this point, the 

number of slots coul d be determined by the maximum value in the 

allocation flag.  

The generation of a feasible solution (or what can be considered 

here as a feasible conflict chain) is done by allocating a group of exams to 

timetable slots which are verified by calling a veri fication procedure. The 

process continues by calling the merging procedure to reallocate exams. By 

splitting a slot p and reassigning constituent exams to other slots, the total 

number of slots may be reduced if every exam in slot p can be allocated to 

some other slot, i.e. is not in conflict with exams in other slots.  

Algorithm 3  

Generate a feasible allocation of group of exams to timetable slots 

Verify allocation of exams to slots 

Execute splitandmerge procedure 

Split a slot p and reassign constituent exams to reduce the number of slots 
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Execute backtracking to further reduce number of slots 

 

Figure 3.17: Algorithm for Allocation of Exams to Time slots  

 

The generation of a feasible solution process through t he allocation 

of exam to timetable slots in Algorithm 3 is further detailed in Algorithm 

3a. 

Algorithm 3a  

Create the first slot, islot=1;        

  

Initialize allocflag array, xs array and inew to 0.  

initialize xe with the exam conflict matrix 

while there is still exam unallocated  

if inew > 0 there was a new assignment to allocflag 

           update 'xe' 

    Obtain an unscheduled exam id (istart) with the biggest conflict 

    if the obtained exam has a confnum==0  

           assign all exams not yet allocated with value nex + 1  

    if exam 'istart' can't be allocated to 'islot-1' slots 

           allocate istart to the last slot 'islot' 

           update xs with the latest exam 

           increment islot by 1 

           update xs with the new slot availability  

    else 

           assign exam istart with value nex + 1 indicating deferred assignment 

    inew=istart 

end 

initialize inew and xc matrix to 0 

reinitialize xe with the exam conflict matrix 

for i=1  to number of exams 

if exam i is allocated to nex+1 

       Assign ye the number of conflicts of exam 'i'  

       for j=1  to islot 

           if xs(j,i)==0 

              Assign ys number of conflicts of slot 'jô 

              Assign y number of conflicts of slot 'j'  after allocating exam 'i'  

              Obtain preference value based on ye and ys 

              Assign xc(j,i) with ye + ys ïy + pref 

           end 

       end 

   end 

end 

Identify exam with maximum conflict reduction potential 

Identify slot to assign 'exam' 

update slot conflict xs 

allocflag(exam)=slot 
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while there is still exams allocated to slot nex+1 

clear y1 

 Update 'exam' column of 'xc' 

 update the 'slot' row of 'xc' 

 for i=1  to number of exams  

       if exam i is assign to nex+1 

           j=slot; 

        Assign ye with number of conflicts of exam 'i'  

             if xs(j,i)==0 

              Assign ys with number of conflicts of slot 'j'  

         Assign y the number of conflicts of slot 'j'  after 

allocating exam 'i'  

              Obtain preference value based on ye and ys 

                Assign xc(j,i) with ye + ys ï y + pref 

             else 

               Assign xc(islot,i) with 0.3 

           end  

       end 

 end 

 identify exam with maximum conflict reduction potential 

 identify slot to assign 'exam' 

 update slot conflict xs 

 allocflag(exam)=slot; 

if slot==islot 

    add additional slot, update xs and xc 

end    

end 
 

 

Figure 3.18: Algorithm for Allocation of Exams to Time slots  

 

The above algorithm is divided into three parts, each having a loop  

to do the allocation of exams to time slots. The first loop is responsible for 

the first round of allocation, ensuring that the exams with the largest 

number of conflicts are scheduled first into the slots. The loop has a 

complexity of O(n) which is propo rtional to the number of exams. The 

second loop will schedule exams which have been deferred in the first 

round of allocation. It is a nested loop with two loops forming the external 

loop and the internal loop. Both of these loops go through the exams list ; 

thus, giving the element n as the maximum value, which results in a 

complexity of O(n2). The final loop is responsible for allocating unallocated 
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exams which have not been scheduled in the first or second loop. The final 

loop has a complexity of O(n2) wi th the maximum number of time slots to 

solve the problem is equal to the number of exams, contributed  by a for 

loop nested in a while loop.  

Overall, the whole process of allocating exams to time slot has the 

complexity of O(n + n 2 + n 2), which totals to O(n + 2n 2) and a final 

complexity of O(n2). 

Effects of Pre -Ordering Exams on Scheduling  

 

In the process of assigning exams to slots, or creating the conflict 

chain, we have identified that the final outcome is highly dependent on the 

ordering of the exams prior to the assignment. We can look further into 

this phenomenon to identify the criteria or reasons for this behaviour. 

Each exam in the examination scheduling has corresponding exams that 

clash with it, except for any exam that is taken only by students who are 

not sitting for any other exam. Whenever there are two students who are 

both taking the same exam and either of them also has another exam, the 

clashing situation exists. This situation is depicted in the following figure:  

 

Figure 3.19: Figure Illustrating Exam E510 Clashes with Exam E66  
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In the above figure students E and F will both be sitting for exam 

E510 and student F has an additional exam E66. When this situation 

arises in the examination sched uling problem, we know that E510 clashes 

with E66; thus, making these two exams interconnected and ensuring that 

they cannot be scheduled in the same time slot or location in order to 

adhere to the hard constraint imposed on the scheduling problem. The 

above instance creates a link of dependence between these two exams. If 

there exists one exam in a slot then we cannot have its counterpart in the 

same slot. Another fact that needs to be highlighted is that the two exams 

E510 and E66 actually contributed tow ards the calculation of the cost 

function. Whenever these two exams are scheduled less than 5 slots apart, 

it will add some weight to the cost function.  

In an instance where there are other exams that the student is 

sitting for and between these exams the re are other students who are also 

sitting for it, this would result in an intertwined connection between the 

exams. This creates a complex interlinking between these exams and 

determines the outcome of the possible solutions that can be generated 

during t he conflict chains generation, based on the order in which these 

exams were assigned into slots. To prove this, we introduce a clash list for 

a set of exams, as depicted in the following figure:   
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Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre -ordered 

Using Ordering 1: Random Ordering (RO)  
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Figure 3.21: Slot Allocation Process for Random Ordering (RO)  

 

In the above and following examples we omit the list of students 

and other details since the information is no longer needed in the 

processing. The figure above shows the exam list from E1 to E8 (the first 

column); each is followed by other boxes containing the exam codes for 
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those exams with w hich they clash. We have obtained this arrangement 

for conflict chain creation based on random ordering. The following figure 

is another ordering of the same datasets which we have obtained through 

the Largest Degree arrangement.  

 

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre -ordered 

Using Ordering 2: Largest Degree (LD)  
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Figure 3.23: Slot Allocation Process for Largest Degree (LD)  

 

Figure 3.20 and Figure 3.22 are translated into two matrices as 

shown below: clashA  and clashB,  respectively. Pre -processing has been 

achieved by running the  code to determine the number of minimum slots 

required. The slot allocation process for the Random O rdering is shown in 

Figure 3.21 and slot allocation pro cess for Largest Degree is show n in 
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Figure 3.23. As a result  of going through the slot allocation pr ocess, the 

following number of slots required for each ordering is obtained:  

clashA=[ 

1 2 4 6 0 0 

2 1 3 4 5 6 

3 2 5 0 0 0 

4 1 2 5 6 0 

5 2 3 4 6 8 

6 1 2 4 5 0 

7 8 0 0 0 0 

  8 5 7 0 0 0]; 

 

clashB=[ 

1 2 3 4 5 6 

2 1 3 4 6 7 

3 1 2 4 5 0 

4 1 2 3 5 0 

5 1 3 4 0 0 

6 1 2 0 0 0 

7 2 8 0 0 0 

8 7 0 0 0 0]; 

 

a) Ordering 1 (clashA) :  5 slots 

b) Ordering 2 (clashB) :  4 slots 

 

We have also done some pre-processing on the problems of 

benchmark datasets to determine the minimum number of slots required 

to schedule the exams an d, as expected, different orderings have produced 

different results.  The differences can be seen in Table 3-1: 
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Table 3-1: Different Number of Slots Generate d After Pre -Processing By 

Using Different Pre -Orderings  

 

Based on these results we can generalize that different pre -

orderings result in a different number of slots being required and this will 

also affect the quality of the schedules later on.  

 

Implementations of Backtracking to Red uce the Number 

of Slots  

 

Reducing the number of slots for a solution reduces the number of days 

and resources that will be utilized for the examination, thus reducing the 

operational cost. However, by reducing the number of days, it will 

Name of 

Dataset  

Minimum No. of 

Slots Required 

Using Random 

Ordering (RO)  

Minimum No. of 

Slots Required 

Using Largest 

Enrolment (LE)  

Minimum No. of 

Slots Required 

Using Largest 

Degree (LD)  

nott  26 19 18 

car-s-91 (I)  44 35 32 

car-f-92 (I)  48 36 34 

ear-f-83 (I)  29 26 24 

hec-s-92 (I)  22 22 20 

kfu -s-93 25 21 20 

lse-f-91 22 20 19 

pur -s-93 (I)  54 41 38 

rye-f-92 28 26 25 

sta-f-83 (I)  35 35 35 

tre -s-92 29 22 23 

uta -s-92 (I)  43 37 36 

ute-s-92 13 10 11 

yor-f-83 (I)  29 25 27 
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definitely increas e the value of the cost function since the Carter cost (2.1) 

function is highly dependent on the temporal distance between consecutive 

exams, which is affected by the number of daysõ duration of the overall 

examinations.  

During the scheduling process, the order of processing the exams 

may sometimes lead to a non -optimal assignment of exams to slots which 

could create an infeasible schedule (i.e. does not satisfy the number of slots 

required). This situation calls for a reassignment of exams from the initial  

slot allocation to other slots in order to ensure the number of slots is 

reduced to the required number and the schedule becomes feasible. This 

kind of reassignment will need to revisit or backtrack through the initial 

allocation or assignment process, an d therefore we will call this a 

backtracking process. In the backtracking process, some assignments 

which have already been made will be undone in order to schedule these 

exams in other time slots. As a result, this simulates the generation of a 

set of feasible schedules that will be used in the optimization process later.  

The backtracking process takes place when we execute the 

optimization stage to minimize the number of slots for a solution. The 

main objective of the algorithm is to look for possible exa m movements 

within the available slots and identify the best moves that can be made.  

The specific objectives of the backtracking might include: 1) to 

reduce the number of slots in order to satisfy the slots number 

requirement in a given problem; 2) to prep are the non -optimal schedule for 

further optimization; or 3) to undo certain assignments of exams to periods 

during scheduling in order to allow other exams, which previously failed to 
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be assigned and caused the infeasibility of the schedule, to be schedul ed 

first.  

 In one of their approaches, Carter et al.  (1996) utilized the 

backtracking process in the main algorithm to come up with a feasible 

solution for a timetable, giving the algorithm the advantage of undoing 

steps; which is de -assigning exams from a  period to obtain a previous 

solution state, with the objective of assigning an exam which previously 

could not be assigned to any one of the periods or slots. Carter et al.  (1996) 

concluded that the backtracking process managed to reduce the overall 

solut ion length by 50%; thus, we found the algorithm very appealing and it 

fitted easily into our implementation. Therefore, it was decided to use the 

Carter et al.  (1996) backtracking algorithm, with some modifications, as 

the basis from which to eliminate or reduce the slots of the current 

solution.  

This is due to the fact that a reduction of slots involves rearranging 

or reassigning allocated exams to new slots, which will result in the 

modification of other related exams. By doing this, we are in the same 

position as Carter et al . (1996), as the probability of the future movement 

of exams to reach a feasible solution is uncertain; thus, we need to have 

the capability to undo any movements made previously.  

This is in anticipation of the fact that by reducing  the number of 

slots at the early stage, one can minimize the cost of timetables at the later 

stage during the optimization process. The initial schedule with a few slots 

(i.e. less than the required number of slots) can always be modified to one 

with the required number of slots. We hypothesize that this could provide 
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a useful buffering space during the optimization involving permutations of 

exam slots. Consequently, this has the potential to improve the quality of 

the schedules (Rahim et al ., 2009; Rahim et al ., 2012). 

After each exam has been assigned to a slot via the scheduling 

process, backtracking is then performed to further reduce the number of 

slots, if any reduction is possible  (Rahim et al., 2013b). The backtracking 

process in our proposed framew ork is illustrated by the following diagram.  

 

Figure 3.24: Backtracking Stage in Our Proposed Framework  

 

We have implemented the backtracking process used by Carter et al.  

(1996). The backtracking took place  after doing the scheduling using the 

allocation method, as discussed in the previous section. The purpose of 

implementing this is to see whether backtracking could reduce the number 

of time slots required to schedule the exams.  

The flowchart of the backt racking process implemented in our work 

is given in Figure 3.25. Note that the general idea was based on the 
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backtracking algorithm proposed by Carter et al.  (1996), but with some 

modifications to suit o ur framework. Figure 3.26 outlines the pseudocode 

of the whole process. 
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Figure 3.25: Flowchart of Backtracking Process  
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Algorithm 4  

for i = 0  to Last _i 

 for p=0 to Last_p  

  if < i  can fit to p> 

   Assign i to p 

  

  end if  

 next p 

 for p = 0 to Last_p  

  Bp = 0  

  x = all course where i  conflicts  

  for j = 0 to max(x) 

   APaper = x[j]  

   for p = 0 to Last_p  

    if < APaper can fit to p> 

     CostApaperAtP = <cost if Apaper is put 

to p> 

    end if  

   next p 

   if < total CostP  = 0> 

    if < i bumped APaper before> 

     Bp = -1 

    else 

     Bp = Bp + 1  

     Mark APaper to bump if p selected 

    end if  

 

   else 

    <Get min cost and mark p for new location of 

APaper> 

   end if  

  next  j 

  Calculate m for p 

 next p 

 Get min  Bp 

 if <min Bp = 0> 

  Get all of p where Bp= 0  

  Get min Mp  for all p selected 

  put i  to p 

  execute APaper shifting  

 else 

  if min Bp is infinity  

   mark i  as unable to schedule  

  else 

   Get all p for min Bp 

   if p unique  

    put i to p 

    execute APaper (which is marked) shifting  

   else 
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    get min Mp  for p 

    put i to p 

    execute APaper (which is marked) shifting  

   end if  

  end if  

 end if  

Next i  

 

Figure 3.26:  Pseudocode for Backtracking  

 

For each exam in the Exam_to_relocate list that we have selected 

(which will be referred to as the current exam), we will calculate a Bp  

value for each slot that we have as the solution, which is the number of 

exams that will need to be relocated if the current exam is assigned to the 

slot p (the process of finding the number of exams clashing with it in each 

of the available periods). Please note that the exams clashing with the 

current exam will be b umped to the Exam_to_relocate list, and thus will be 

assumed to be unscheduled exams.  

In the process of calculating the Bp value for each slot we create a 

CurrentExamClashWith  list for each slot that the exam can enter or be 

relocated. All the exams which  have students clashing will be included in 

this list. The total number of the content of CurrentExamClashWith  is the 

Bp for the slot. If the exam is allocated there the content of 

CurrentExamClashWith  can easily be used to populate the 

Exam_to_relocate li st. 

Initially, each Bp value in each slot is assigned the value of 0 and if 

an exam cannot be assigned to the slot for a specific reason, it will be 

marked or given the value number_of_exams + 1. In the process of finding 

the Bp, if the exam in the list ha s bumped any clashing exams encountered 
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in the period we are dealing with, then the Bp for this period is equal to 

number of exams + 1 (Bp= nex + 1).  This is a bit different from Carter et al.  

(1996), who assigned an infinity value to the Bp whenever they 

encountered this condition. We also assign Bp = nex+1 for a period, if the 

exam in the list originated from this period. This is another modification to 

Carterõs method to avoid a cyclic shift. We continue finding the Bp for all 

periods for each exam in th e waiting list.  

Each of the exams that can be relocated to accommodate the coming 

exam has an indicator to determine whether the incoming exam has a 

history of shifting out the exam to the relocation list. We create a 

BumpMatric  which is a matrix of exam x exam, where the rows represent 

the Exam_to_reduce and columns represent CurrentExamClashWith . The 

intersection between rows and columns has an indicator: the value 1 

indicated the Exam_to_reduce has bumped the corresponding exam 

CurrentExamClashWith . The value 0 indicates that Exam_to_reduce has 

not bumped the corresponding exam CurrentExamClashWith.  This value, 

however, will change to 1 in the transfer stage if a ôbumpõ occurs.  

We have taken the same approach as Carter et al.  (1996) in that an 

exam is al lowed to push out an exam to the relocation list only once during 

the process; this is to eliminate the probability of creating a cyclic shift 

resulting in an infinite loop of transferring exams out and into the slot. In 

order to do this, we monitor or kee p track of the last slot that an exam in 

the relocated list originated from. This is to ensure that the exam that has 

been transferred out does not go back into its original slot when it is time 

for the exam to be evaluated for relocation.  
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The purpose of f inding the Bps for all the periods is to determine 

which period to choose to assign the exams in the waiting list. Bps for all 

periods can range from the value of 0 to nex + 1. So, the best Bp would be 0 

and the worst Bp would be nex + 1. This means that t he exam in the 

waiting list will be assigned to the period with the minimum value of Bp. 

The lowest Bp value will be the best criterion to be selected as the target 

location for the Current  exam relocation.  

In the period selection stage, there is always a possibility of having 

the same Bp values. If there are several periods with Bp = 0, then our 

method will choose the first period with Bp=0 encountered or, in other 

words, the first available period with no exams clashing with the exam in 

the waiting list. In cases where the Bp ranges from the value 1 to nex 

(Bp=1 to Bp=nex),  and there exist multiple periods with the same Bps, 

then our method will execute a selection based on the weighting given to 

the periods.  

The weighting given was based on the total numb er of students 

having conflicts in both exams in the periods and the exam in the waiting 

list. The period with the maximum value of the weighting will be selected; 

thus, the exams in the period clashing with the exam in the waiting list 

will be bumped to t he waiting list. The weighting  given is mainly for the 

purpose of breaking the ties of the same Bps. 

Once the period or the location to assign the exam in the waiting 

list is complete, the transfer stage follows. The transfer stage is the process 

of transf erring the current exam in the waiting list to the new period 

selected. 
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The above process then repeats for other exams in the waiting list. 

If, at the end of the process, some exams fail to be assigned to any periods, 

then we assume the backtracking proces s has failed; thus, the above 

process will be undone and the previous configurations of allocation of 

exams to periods will be used. The transfer stage will allocate the exam to 

its new slot and it will also transfer out existing exams in the slot that 

clashed with the incoming exam to the Exam_to_relocate list. All current 

information that is affected by the move is initialized to its original value 

before starting the evaluation for the next exam in the Exam_to_relocate 

list. If the algorithm finds a situ ation where there is no solution to allocate 

all the existing exams or any of the exams in the Exam_to_relocate list, 

then it will revert and undo all of the movements of exams to obtain the 

original placement before the reduction of the slot is executed.  

The backtracking  algorithm consists of a few levels of nested loops 

that will increase the computational complexity. This is due to the fact 

that we will be traversing and searching the solution space for all possible 

moves that an exam can make and all mo ves are evaluated. The first loop 

will traverse the list of exams that have to be selected to be relocated. 

Within this loop there are two sequential loops. The first will traverse all 

the available remaining slots to check if the exam can be allocated to the 

slot; and, if this is possible, an allocation of the exam to the slot will take 

place. The second loop will  go through all the available periods and 

evaluate the possibility of assigning the exam to other slots which have 

conflicting exams. Within the second loop there are two loops; one inside 

the other. Each of these loops has a different controlling logic. The 

complexity of the main loop depends on the number of exams that need 
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rescheduling and would have a maximum value of n, being the number of 

exams. The two sequential loops inside the main loop are controlled by the 

number of slots currently available and required by the solution m. The 

algorithm initially will have the complexity of O(n(m+m(n(m)))) . As the 

value of m and n grow bigger, the value of m will be the same as n. The 

initial algorithm complexity reduces to O(n(n+n(n(n)))) = O(n(n+n 3)). This 

can be further reduced to O(n2 + n3) = O(n3). 

 

Types of Backtracking Implemented in the Proposed 

Framework  

 

i.  First Method: Backtracking 1 (BT1)  

 

In th e first backtracking method, called here Backtracking 1 (BT1), we 

attempt to eliminate the last utilized time -slot. We have implemented the 

backtracking process used by Carter et al . (1996), but with some 

modifications. In contrast to Carter et al.  (1996)õs method, where 

backtracking was performed during the initial placement of exams, in our 

approach the placement of exams to their allocated slots has already been 

completed; therefore, we are attempting to convert the infeasible schedule 

into a feasible on e.  

After allocations of exams to slots were completed, we identified all 

the exams in the last slot and we assigned them to a waiting list of 

unscheduled exams. Then, for each exam in this list, we initialized the 

selection criterion, which is known as Bp (according to Carter et al. , 1996), 

for all periods equal to zero (Bp=0).  Next, for each exam in the list we 
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proceed by finding the number of exams clashing with it in each of the 

available periods. Bp for each period is the number of exams clashing with 

the exam currently being evaluated in the waiting list. Please note that 

the exams clashing with the exam in the list are the exams that will be 

bumped to the waiting list, and thus will be assumed to be unscheduled 

exams. (Note also that we process the ex ams in the list on a ôFirst In, First 

Outõ basis).  

 

ii.  Second Method: Backtracking 2 (BT2)  

 

In the second backtracking approach (BT2), the objective is to eliminate 

the slot containing the fewest number of exams after the allocation 

method. The number of slo ts that will be eliminated is also 1 (the same as 

BT1).  

It is interesting to note here that, in BT2, the slot that will be 

eliminated could be any slot in the schedule (in BT1 it is always the last 

slot); therefore, it could be the first, in the middle or the last one. Once the 

slot with the fewest exams has been determined, all the exams will be put 

in a waiting list. Each exam in the list will be evaluated for reallocation as 

with our first approach (BT1).  

Differences between Carterõs Backtracking and the 

Proposed Backtracking  

 

The backtracking implemented by Carter et al.  (1996) was used during the 

initial placement process. However, in our approach the placement of 

exams in their allocated slots has been completed. What we are doing is 
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using the backtrac king method to rearrange the placement of exams to 

reduce the final number of time slots to schedule all the exams. We differ 

in terms of approach and purpose from the backtracking of Carter et al.  

(1996); we are utilizing the backtracking process to reduc e the number of 

slots of an existing feasible solution and the other is utilizing the process to 

allocate exams which could not be allocated via the normal process. Thus, 

two different outcomes will be derived from the process, as depicted in the 

two follo wing figures.  

 

Figure 3.27:  Flowchart for Carterõs Backtracking in General 
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