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Abstract: Two measures that quantify distinguishability of fuzzy sets are addressed in this
paper: similarity, which exhibits sound theoretical properties but it is usually computationally
intensive, and possibility, whose calculation can be very efficient but does not exhibit the same
properties of similarity. It is shown that under mild conditions – usually met in interpretable
fuzzy modelling – possibility can be used as a valid measure for assessing distinguishability, thus
overcoming the computational inefficiencies caused by the use of similarity measures. Moreover,
those procedures aimed to minimize possibility also minimize similarity and, consequently, im-
prove distinguishability. In this sense, the use of possibility is fully justified in interpretable fuzzy
modelling.
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Interpretability is one of the most current issues concerning fuzzy modelling. While accuracy
was the main concern of the first fuzzy model builders, in recent years interpretability has been
recognized as the key feature of fuzzy models in the context of Soft Computing [1]. One of the
most common interpretability constraints adopted in fuzzy modelling literature is the so-called
distinguishability constraint. Distinguishability is a relation between fuzzy sets defined on the
same Universe of Discourse. Roughly speaking, distinguishable fuzzy sets are well disjunct so
they represent distinct concepts and can be assigned to semantically different linguistic labels.

Distinguishability can be formalized in different ways, the most adopted is by means of similarity
measures. In [2] similarity measures are deeply discussed in the context of fuzzy modelling.
There, similarity is interpreted as a fuzzy relation defined over fuzzy sets and corresponds to the
”degree to which two fuzzy sets are equal”. Similarity measures well capture all the requirements
for distinguishable fuzzy sets, but their calculation is usually computationally intensive. As a
consequence, most strategies for fuzzy model building that adopt similarity for interpretability
are based on massive search algorithms (see, e.g. [3], [4], [5]). Alternatively, distinguishability
improvement is realized in separate learning stages, often after some data driven procedure like
clustering, in which similar fuzzy sets are usually merged together [2]. When distinguishability is
to be considered in less time consuming learning paradigms, like neural learning, other measures
are used in place of similarity, like possibility [6], [7], [8].

The possibility measure [10] has some attracting features that promote a deeper investigation
in the context of distinguishability assessment. Although it is not a similarity measure, it has a
clear and well-established semantics since it can be interpreted as the degree to which the flexible
constraint (X is A) is satisfied. Moreover, the possibility measure between fuzzy sets can be often
analytically described in terms of fuzzy sets’ parameters. This makes possibility evaluation very
efficient and can be effortlessly embodied in computationally inexpensive learning schemes.

The objective of the paper is to show that some significant relationships between similarity
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and possibility exist. Specifically, some sufficient conditions correlate possibility and similarity
in the worst case, i.e. the lower is the possibility between two fuzzy sets, the lower is the
maximum similarity that can be measured between the same fuzzy sets. Such kind of worst-
case analysis is mainly due to the hypothesized conditions on the fuzzy sets, which are as
general as possible so as to include a wide class of fuzzy sets. As a final result, it is shown
that under some mild conditions, any transformation aimed to decrease possibility between
fuzzy sets actually decreases also their similarity measure and, consequently, improves their
distinguishability. In light of such theoretical results, possibility measure emerges as a good
candidate for interpretability analysis and for efficient interpretable fuzzy modelling.

1 Measures to Quantify Distinguishability

In this Section similarity and possibility measures are briefly described. Any fuzzy set with a
capital letter (A, B, etc.) and the corresponding membership function with µA, µB , etc. Each
membership function is defined on the same Universe of Discourse U, which is assumed to be a
one-dimensional closed interval [mU ,MU ] ⊂ R. The set of all possible fuzzy (sub-)sets defined
over U is denoted with F (U), while the finite family of fuzzy sets actually present in a fuzzy
model is called ”frame of cognition” and is denoted with F.

1.1 Similarity

According to [2], the similarity measure between two fuzzy sets A and B is a fuzzy relation that
expresses the degree to which A and B are equal. Several similarity measures have been proposed
in literature, and some of them can be found in [9]. However, in interpretability analysis, the
most commonly adopted similarity measure is the following:

S (A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B| (1)

Distinguishability in the context of interpretable fuzzy modelling is guaranteed by imposing that
similarity between any two distinct fuzzy sets must not exceed a user-given threshold σ:

∀A,B ∈ F : A �= B → S (A,B) ≤ σ (2)

The evaluation of (1) may become computationally intensive for several classes of fuzzy sets
(e.g. Gaussian) because of the integration operation necessary for determining the cardinality of
the involved fuzzy sets. For such reason, similarity is not used in some learning schemes, where
more efficient measure are instead adopted.

1.2 Possibility

The possibility measure between two fuzzy sets A and B is defined as the degree of applicability
of the fuzzy constraint (A is B) [10]. Possibility is evaluated according to:

Π (A,B) = sup
x∈U

min {µA (x) , µB (x)} (3)

The possibility measure quantifies the extent to which A and B overlap. An overlapping thresh-
old π means that the possibility between two any distinct fuzzy sets in the frame of cognition
must not exceed π:

∀A,B ∈ F : A �= B → Π(A,B) ≤ π (4)



The possibility measure has two main features that are important in distinguishability analysis.
First, the threshold possibility value π has a clear semantics as it can be interpreted in the context
of possibility theory [10]. Conversely, the similarity threshold σ has a more arbitrary nature
(it also depends on the specific definition of intersection and union operators). Second, unlike
for similarity computation, numerical integration is not necessary when calculating possibility.
Moreover, although the general definition (3) may require a numerical sampling of the Universe of
Discourse, the possibility measure can be evaluated analytically for several classes of membership
functions (e.g. triangular, Gaussian, bell-shaped, etc., ). For this second feature, possibility is
envisaged to be more suitable in efficient learning schemes.

From such considerations, the possibility measure emerges as a potentially good candidate for
replacing similarity measure in distinguishability assessment. To this aim, an investigation on
possible relationships existing between similarity and possibility is presented in the next section.

2 Relating Similarity vs. Possibility

The main advantage deriving from using possibility in place of similarity consists in a more
efficient evaluation of fuzzy set distinguishability, which can be used in on-line learning schemes.
However, the adoption of possibility for quantifying distinguishability is consistent provided the
existence of a monotonic relation between possibility and similarity, i.e. a relation that assures
low grades of similarity for small values of possibility. We found that such relation can exist,
provided that some restrictions are imposed on the involved fuzzy sets.

Generally, in interpretable fuzzy modelling, fuzzy sets are required to be interpretable, i.e. they
should satisfy a number of properties. In this work, we focus on the following properties:

Convexity A fuzzy set A is convex iff the membership values of elements belonging to any
interval are not lower than the membership values at the interval’s extremes:

∀a, b, x ∈ U : a ≤ x ≤ b → µA (x) ≥ min {µA (a) , µA (b)} (5)

Normality A fuzzy set A is normal iff there exists at least one element with full membership:

∃x ∈ U : µA (x) = 1 (6)

Continuity A fuzzy set A is continuous if its membership function µA is continuous in U .

Such properties were exploited to discover possible relationships between possibility and simi-
larity. Precisely, we derived the following theorem.

Theorem 1 Let A and B be two fuzzy sets that are continuous, normal and convex. Let pA ∈
arg maxµA, pB ∈ arg maxµB and suppose pA < pB. Let π = Π(A,B) and xπ ∈ ]pA, pB [ such
that µA (xπ) = µB (xπ) = π. In addition, suppose that:

∀x ∈ ]pA, xπ[ :
d2µA

dx2
(x) ≥ 0 (7)

and:

∀x ∈ ]xπ, pB [ :
d2µB

dx2
(x) ≥ 0 (8)

Then, the similarity between A and B is upper-bounded by:

S (A,B) ≤ Smax =
2π

r + 2π − rπ
(9)



being r the ratio between the distance pB − pA and the length of the support of A ∪ B1:

r =
pB − pA

|suppA ∪ B| (10)

Proof. The maximally similar fuzzy sets that are normal, convex and with possibility π must
be built so that the cardinality of the intersection is the highest possible, while the cardinality
of the union is the smallest possible. The following two fuzzy sets Amaxand Bmax satisfy such
requirements (see fig. 1 for an example):

µAmax
(x) =




π if x ∈ [min suppA ∪ B, pA[
x(π−1)+xπ−pAπ

xπ−pA
if x ∈ [pA, xπ]

π if x ∈ ]xπ,max suppA ∪ B]
0 elsewhere

(11)

µBmax
(x) =




π if x ∈ [min suppA ∪ B,xπ[
x(π−1)+xπ−pBπ

xπ−pB
if x ∈ [xπ, pB ]

π if x ∈ ]pB,max suppA ∪ B]
0 elsewhere

(12)

The intersection and the union of such membership functions coincide in all points of the support
except the interval [pA, pB ], where the membership functions have null second derivative. As a
consequence, any fuzzy sets satisfying the hypothesis will have:

∀x ∈ [pA, xπ] : µA (x) ≥ µAmax
(x) (13)

and

∀x ∈ [xπ, pB] : µB (x) ≥ µBmax
(x) (14)

In this way, the part of fuzzy sets that are involved in the union but not in the intersection is
minimized. More specifically, the intersection of the two fuzzy sets has the following membership
function:

µAmax∩Bmax
(x) =

{
π if x ∈ suppA ∪ B
0 elsewhere

(15)

The union of the two fuzzy sets has the following membership function:

µAmax∪Bmax
(x) =




π if x ∈ [min suppA ∪ B, pA[
x(π−1)+xπ−pAπ

xπ−pA
if x ∈ [pA, xπ]

x(π−1)+xπ−pBπ
xπ−pB

if x ∈ [xπ, pB ]
π if x ∈ ]pB,max suppA ∪ B]
0 elsewhere

(16)

The similarity of the two fuzzy sets is:

S (Amax, Bmax) =
|Amax ∩ Bmax|
|Amax ∪ Bmax| =

π |suppA ∪ B|
π |suppA ∪ B| + 1

2 (1 − π) (pB − pA)
(17)

By defining r as in (10), the similarity is shown to be equal to (9). Note that Amax and Bmax

are not continuous. However, continuous fuzzy sets may be defined so as to be arbitrary similar
to Amax and Bmax. Hence, by defining Smax = S (Amax, Bmax), the maximal similarity measure
is the upper-bound of the actual similarity between the original fuzzy sets A and B.
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Figure 1: Example of fuzzy sets with maximal similarity for a given possibility measure

Note that the additional requirement for the second derivatives is not a significant limitation,
since commonly used fuzzy set shapes (triangular, trapezoidal, Gaussian, bell-shaped, etc.)
satisfy such requirement. Care must be paid for Gaussian fuzzy sets, where the point xπ should
lay before the inflexion point, (i.e. should be smaller than center+width for fuzzy set A and
higher than center-width for fuzzy set B). Nevertheless, the theorem establishes only sufficient
conditions, hence partial violation of the requirements do not invalidate the results.

The relationship between possibility and similarity established by the theorem holds only for
the upper-bound of the similarity measure, while the actual value is strictly related to the
shape of the membership function. Paradoxically, the actual similarity measure between two
low-possibility fuzzy sets may be higher than two high-possibility fuzzy sets. However, relation
(9) assures that the similarity measure does not exceed a defined threshold that is monotonically
related to the possibility measure. As a consequence, any modelling technique that assures small
values of possibility between fuzzy sets, indirectly provides small values of similarity and, hence,
good distinguishability between fuzzy sets. Thus, relation (9) justifies the use of possibility
measure in interpretable fuzzy modelling.

3 Possibility and similarity minimization

Minimizing similarity between fuzzy sets is a classical approach to improve their distinguishabil-
ity. However, the definition of similarity calls for computationally intensive methods or separate
stages, hence it is not convenient to use similarity for on-line learning schemes. When efficient
learning schemes are necessary, other measures are adopted in place of similarity, hence an inter-
esting issue concerns how reducing non-similarity measures effectively reduces similarity. Here
we focus on possibility measure as an alternative measure to quantify distinguishability. The
following lemma characterizes a wide class of procedures for possibility minimization.

Lemma 2 Let A and B two fuzzy sets defined on the Universe of Discourse U , which are
continuous, normal and convex. Let pA ∈ arg max µA, pB ∈ arg maxµB and suppose pA < pB.
Let Φ : F (U) → F (U) be a transformation such that B′ = Φ (B) is a continuous, normal and

1The support of a fuzzy set is the (crisp) set of all elements with non-zero membership, i.e. supp X =
{x ∈ U : µX (x) > 0}. For convex fuzzy sets, the support is an interval.



convex fuzzy set, ∀x ∈ U : x ≤ pB → µB′ (x) ≤ µB (x). Then,

Π
(
A,B′) ≤ Π(A,B) (18)

Conversely, if B′ is such that ∀x ∈ U : x ≤ pB → µB′ (x) ≥ µB (x), then

Π
(
A,B′) ≥ Π(A,B) (19)

Two very common examples of transformations satisfying the lemma’s hypothesis are the trans-
lation and the contraction of the membership function. Such transformations can be effectively
used to reduce possibility between two fuzzy sets, but do such transformations effectively reduce
similarity? The following corollary gives the sufficient conditions that guarantee such reduction.

Corollary 3 Any transformation Φ : F (U) → F (U) such that B′ = Φ (B) preserves lemma’s
hypothesis with π′ = Π(A,B′) < π and r′ = pB′−pA

|supp A∪B′| ≥ r, produces a decrease of the maximal
similarity Smax.

As a consequence of the corollary, every method aimed to minimize possibility (to a user-given
threshold) actually reduces (maximal) similarity, thus improving distinguishability. In this sense,
the adoption of possibility as a measure of distinguishability is fully justified. The additional
constraint required in the corollary (the ratio r must not decrease) is always fulfilled by any
translation that lengthens the distance between the modal points. Attention must be paid for
contraction, as the support may be reduced. However, if multiplicative contraction is adopted
(i.e. a contraction such that µB′ (x) > 0 if µB (x) > 0), then the corollary can be still applied.

4 Conclusions

Similarity can be considered as the most representative measure for distinguishability of fuzzy
sets. Besides similarity, possibility can be considered as an effective alternative to quantify
distinguishability. The key features of possibility measures are a sound semantical meaning of
its values and the computationally efficiency of the calculation procedure. Also, a possibility
measure can be expressed in most cases analytically in terms of fuzzy sets parameters, so it
can be used in many learning schemes without resorting computationally intensive algorithms.
In this paper we proved that under mild conditions (always satisfied by interpretable fuzzy
sets) possibility and similarity are related monotonically, so that procedures aimed to minimize
possibility also minimize similarity and, consequently, improve distinguishability. This suggests
that possibility can be successfully adopted in interpretable fuzzy modelling.

References

[1] P. Bonissone, Y.-T. Chen, K. Goebel and P.S. Khedkar, ”Hybrid Soft Computing Systems:
Industrial and Commercial Applications,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1641-
1667, 1999

[2] M. Setnes, R. Babuska, U. Kaymak, and H. R. Van Nauta Lemke, ”Similarity measures
in fuzzy rule base simplification,” IEEE Trans. on Sys., Man and Cybernetics, part B,
28(3):376-386, 1998.

[3] H. Roubos and M. Setnes, ”Compact and transparent fuzzy models and classifiers through
iterative complexity reduction,” IEEE Trans. on Fuzzy Systems, 9(4):516-524, 2001.

[4] P. Meesad and G. G. Yen, ”Quantitative measures of the accuracy, comprehensibility, and
completeness of a fuzzy expert system,” in Proceedings of the IEEE International Conference
on Fuzzy Systems (FUZZ’02), Honolulu, Hawaii, 2002, pp. 284-289.



[5] Y. Jin, ”Fuzzy modeling of high-dimensional systems: Complexity reduction and inter-
pretability improvement,” IEEE Trans. on Fuzzy Systems, 8(2):212-221, 2000.

[6] Y. Jin and B. Sendhoff, ”Extracting interpretable fuzzy rules from RBF networks,” Neural
Processing Letters, 17:149-164, 2003.

[7] J. Espinosa and J. Vandewalle, ”Constructing fuzzy models with linguistic integrity from
numerical data - AFRELI algorithm,” IEEE Trans. on Fuzzy Systems, 8(5):591-600, 2000.

[8] G. Castellano, A.M. Fanelli and C. Mencar, ”A Neuro-Fuzzy Network to Generate Human
Understandable Knowledge from Data,” Cognitive Systems Research Journal, Special Issue
on Computational Cognitive Modeling, 3(2):125-144, 2002.

[9] M. Setnes, ”Fuzzy rule-base simplification using similarity measures,” Master’s thesis, Dept.
of Electronic Engineering, University of Delft, 1995.

[10] D. Dubois and H. Prade, ”Fuzzy Sets and Systems: Theory and Applications,” Academic
Press, New York, 1980.


