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ABSTRACT

Excdudor/induson hyperbox classfication has demondrated Sgnificant advantages in terms
of its ability to cover topologicaly complex data structures with a relaively few hyperboxes
thus resulting in the superior interpretability of classfication results. However, the sze of
excluson hyperboxes may occasonaly become prohibitive if the data classes are grouped in
a paticulaly unfavorable way in the pattern space. In this study we consder adaptation of
the maximum sze of hyperboxes in response to the raio of the excluson to induson
hyperboxes. Two dternative adaptation dtrategies are being conddered: (i) the adaptation of
the size of dl hyperboxes and (ii) the adaptation of the size of hyperboxes tha fdl within the
previoudy identified excluson area  The tradeoff between the number and the complexity of
the dasdfication rules implied by the two drategies is assessed on a st of sample
classfication problems.

Key Words: Pattern classfication, exclusion/inclusion hyperboxes, min-max neurd
networks, information granulation, Information and knowledge management

1. INTRODUCTION

The use of fuzzy sets for the representation of red-life data has been proposed by Zadeh
(1965) who pointed out that typicaly red-life data is not crisp but is characterized by a
degree of membership. In this case the use of traditiond set theory forces unredigtic binary
classfication decisons where the graded response is more appropriate. An early application
of fuzzy sets to the pattern classfication problem (Bdlmann et d, 1966) proves the point that
fuzzy sts represent an excelent tool smplifying the representation of complex boundaries
between the pattern classes while retaining the full expressve power for the representation of
the core area for each class. By having classes represented by fuzzy set membership
functions it is possble to describe the degree to which a pattern belongs to one class or
another.

Bearing in mind that the purpose of classfication is the enhancement of interpretability of
data or, in other words, derivation of a good abdtraction of such data the use of hyperbox
fuzzy sets as a description of pattern classes provides clear advantages. Each hyperbox can be
interpreted as a fuzzy rule. However, the use of a sngle hyperbox fuzzy set for each pattern
class is too limiting in that the topology of the origind data is frequently quite complex (and
incompatible with the convex topology of the hyperbox). This limitation can be overcome by
using a collection (union) of hyperboxes to cover each pattern class set (Smpson, 1992, 1993)



(Gabrys et d, 2000). Clearly, the smdler the hyperboxes the more accurate cover of the class
st can be obtaned. Unfortunatdy, this comes a the expense of increesng the number of
hyperboxes, thus eroding the origind objective of interpretability of the classfication result.
We have therefore a task of baancing the requirements of accuracy of coverage of the
origind data (which trandaes on the minimizaion of miscdassficaions) with the
interpretability of class sets composed of many hyperboxes.

The solution origindly proposed by Simpson (1992) was the optimization of a single
parameter defining the maximum hyperbox dSze as a function of misclassfication rate.
However, the use of a sngle maximum hyperbox Sze is somewhat redtrictive. For class sats
that are well separated from each other the use of large hyperboxes is quite adequate while for
the closdy spaced class sets, with a complex partition boundary, there is a need for smal
hyperboxes, s0 as to avoid high misclassfication rates. A more general solution proposed in
(Gabrys et d, 2000), involved the adaptation of the Sze of individud hyperboxes so that it is
possible to generate larger hyperboxes in some areas of the pattern space while in the other
aress the hyperboxes are condrained to be smal to maintan low misclassfication raes. The
adaptation procedure requires however several presentations of data to arrive a the optimum
Szes of hyperbox szesfor the individua classes.

The above two approaches both generate class sets as a union of hyperbox sets. A different
approach that expresses class sets as a difference of two fuzzy sets has been proposed in
(Bargidla et d, 2003). In this gpproach, the first set that is generated is a union of hyperboxes
produced in the standard way (incluson set) and the second set is a union of intersections of
al hyperboxes that bedong to different classes (excluson set). By subtracting the excluson
hyperboxes from the incluson ones it is possble to express complex topologies of the class
st using fewer hyperboxes. Also, the three steps of the Min-Max clustering (Simpson, 1992;
Gabrys et d, 2000) namely expansion, overlap test and contraction can be reduced to two:
expansion and overlap tests.

This paper builds on the result reported in (Bargida et d, 2003) and explores the
adaptation of the maximum hyperbox sSze as afunction of the ratio of excluson and indusion
hyperboxes. Section 2 gives an overview of the fuzzy Min-Max dasdfication dgorithm. In
Section 3 we discuss problems inherent to the Min-Max adgorithm and describe the excluson
induson fuzzy hyperbox classfication agorithm. Section 4 describes the proposed
adaptation dgorithm and Section 5 provides numerica examples.

2.FUZZY MIN-MAX CLASS FICATION

The fuzzy MinMax classfication neurd networks are built usng hyperbox fuzzy sets. A
hyperbox defines a region in R", or more specificaly in [0 1]" (since the data is normalized to
[0 1]) and dl patterns contained within the hyperbox have full class membership. A hyperbox
B is fully defined by its minimum V and maximum W vertices. So that, B=[V , W] 1 [0 1]"
withV, W I [01]".

Fuzzy hyperbox B is described by a membership function (in addition to its minimum and
maximum vertices), which maps the universe of discourse (X) into aunit interval

B:X® [0, 1] (1)

Formdly, B(x) denotes a degree of membership that describes an extent to which x
belongsto B. If B(x) =1 then we say that x fully beongs to B. If B(X) is equd to zero, X is
fully exduded from B. The vdues of the membership function that are in-between 0 and 1
represent a partid membership of x to B. The higher the membership grade, the stronger is the
association of the given dement to B. In this paper we will use an dternaive notation for the
hyperbox membership function b(X, V, W) which gives an explicit indication of the min- and



max- points of the hyperbox. The hyperbox fuzzy set will then be denoted as B={X, V, W,
b(X, V, W)}. Note that X is an input patern that in generd represents a class-labdled
hyperbox in [0 1]". To put it formally

X={[X' X1, d} 2

where X' and X" represent min and max points of the input hyperbox X and di {1,...,p} isthe
index of the classesthat are present in the data et.

While it is possble to define various hyperbox membership functions tha saisfy the
boundary conditions with regard to full induson and full excluson, it is quite intuitive to
adopt a function that ensures monotonic (linear) change in-between these extremes. Following
the suggestion in (Sipmson, 1992) we adopt here

by (Xy) = min(min([L- £ (4 - w6 [1- 1, - X, )1) ©

il if rg>1
where f(r,g) = } rg if O£rg£1l isatwo parameter functioninwhich r represents

Lo if rg<o0
the distance of the test pattern X, from the hyperbox [V W] and g =[g, 9, ...,0,] represents
the gradient of change of the fuzzy membership function. Thisisillustrated in Figure 1.
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Figure 1. One-dimensond (a) and two-dimensond (b) fuzzy membership function evauated
for apoint input pattern Xh,.

The fuzzy Min-Max dgorithm is initisted with a sngle point hyperbox [V; Wj]=[0 0].
However, this hyperbox does not perdst in the find solution. As the firg input pattern
Xn={[Xn' Xn"], d} is presented the initia hyperbox becomes [V; Wi]= [Xp' Xp"]. Presentation of
subsequent input patterns has an effect of creeting new hyperboxes or modifying the sze of
the existing ones. A specid case occurs when a new pattern fdls indgde an existing hyperbox
in which case no modification to the hyperbox is needed.

Hyperbox expansion: When the input pattern X, is presented the fuzzy membership function
for each hyperbox is evduated. This creates a preference order for the incluson of X, inthe



exising hyperboxes. However the incluson of the pattern is subject to two conditions. (a) the
new patern can only be included in the hyperbox if the class labd of the pattern and the
hyperbox are the same and (b) the sSze of the expanded hyperbox that includes the new
pattern must not be grester in any dimenson than the maximum permitted sze. To put it
formaly the expanson procedure involves the following

i d P testif B, satisfiesthe maximum size constraint
_1 G j

g 4
jelse b take another Bj

if clasy(B,)

with the Size condraint in (4) defined as
n(maX(Wji i) - min(v;; X)) £Q ©®)
If expanson can be accomplished then the hyperbox min and max points are updated as

v; =min(v; ,x;), foreachi=1,..,n

w;; = max(w;;, %), foreachi =1,..,n

The parameter Q can ether be a scaar, as suggested in [7], or a vector defining different
maximum hyperbox szes in different dimensions [4]. It can be shown that the latter can result
in fewer hyperboxes defining each pattern class but requires some a-priori knowledge about
the topology of individual class sets or multiple presentations of datato facilitate adaptation.

Overlap test: The expangon of the hyperboxes can produce hyperbox overlap. The overlep of
hyperboxes that have the same class labels does not present any problem but the overlap of
hyperboxes with different class labeds must be prevented since it would create ambiguous
classfication. The test adopted in [7] and [4] adopts the principle of minima adjusment,
where only the smdlest overlgp for one dimenson is adjusted to resolve the overlgp. This
involves consderation of four cases for each dimenson

Casel: v} <V <wj; <wy
Case2: v <Vj <W <Wj;
Cased: v <V <W <w;
Cased: v <Vji <wj; <w

The minimum vaue of overlap is remembered together with the index i of the dimenson,
which is gored as variable D. The procedure continues until no overlap is found for one of
the dimensons (in which case there is no need for subsequent hyperbox contraction) or al
dimensons have been tested.

Hyperbox contraction: The minimum overlap identified in the previous step provides basis for
the implementation of the contraction procedure. Depending on which case has been
identified the contraction is implemented as follows:
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Case2: Vig" = wp' = >

old

Case3: if Wp- Vip EWjp- Vip then Vig" = wi otherwise wig" = v

old

Casel Vip =Wp = oralternatively (Wi5" =Vip

oralternatively (V5" = wS)

Cased: if Wep- Vip EWjp- Vo then wiy’ =i otherwise vig' = wip

The above three steps of the fuzzy Min-Max classfication can be expressed as training of
a three-layer neural network. The network, represented in Figure 2, has a smple feed-forward
dructure and grows adaptively according to the demands of the classfication problem. The
input layer has 2*n processng dements, the fird n dements ded with the min point of the
input hyperbox and the second n eements ded with the max point of the input hyperbox Xn =

[XL Xp]. Each second-layer node represents a hyperbox fuzzy set where the connections of

the firg and second layers are the min-max points of the hyperbox incuding the given pettern
and the trandfer function is the hyperbox membership function. The connections are adjusted
using the expanson, overlap test, contraction sequence described above. Note that the min

points matrix V' is modified only by the vector of lower bounds X|, of the input pattern and the
max points matrix W is adjusted in response to the vector of upper bounds X}, .

X' = X1y «eos X'hnls XY = [XYha, -ees XYhn]
V: [Vl,. . 'IVm]y W: [Wl,. . .,Wm]

B=[Bu,...,.Bn]
U=[u1s,...,U1p;...; Um1,...,Ump]
c=[ c1,...,Cp

Figure 2. The three-layer neura network implementation of the GFMM dgorithm.

The connections between the second- and third-layer nodes are binary vaues. They are stored
inmatrix U. The dementsof U are defined asfollows:

11 if B isa hyperbox forclass c,
Ui =1 . (6)
10 otherwise

where B; is the jth second-layer node and c is the kth third-layer node. Each third-layer node
represents a class. The output of the third-layer node represents the degree to which the input
pattern X, fits within the dass k. The trander function for each of the third-layer nodes is
defined as



m
G = Max Bjujk (7)
for each of the p third-layer nodes. The outputs of the class layer nodes can be fuzzy when

caculated usng expresson (7), or crip when a vaue of one is assgned to the node with the
largest ¢k and zero to the other nodes.

3. EXCLUSION/INCLUSION CLASSIFICATION ALGORITHM

Traning of the Min-Max neurd network involves adaptive condruction of hyperboxes guided
by the class labels. The input patterns are presented in a sequentid manner and are checked
for a possble incduson in the exiging hyperboxes. If the pattern is fully included in one of the
hyperboxes no adjusment of the min- and max-point of the hyperbox is necessary, otherwise
a hyperbox expansion is initited. However, after expansion is accomplished it is necessary to
peform an overlap test snce it is possble that the expanson resulted in some areas of the
pattern space belonging smultaneoudy to two diginct classes, thus contradicting the
classfication itsdf. If the overlap test is negative, the expanded hyperbox does not require
any further adjusment and the next input pattern is being considered. If, on the other hand,
the overlep test is pogtive the hyperbox contraction procedure is initisted. This involves
subdivison of the hyperboxes dong one or severa overlgpping coordinates and the
consequent adjusment of the min- and max-points of the overlapping hyperboxes. However,
the contraction procedure has an inherent weakness in that it inadvertently diminates from the
two hyperboxes some part of the pattern space that was unambiguous while in the same time
retaining some of the contentious part of the pattern space in each of the hyperboxes. This is
illugtrated in Figure 3.
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Figure 3. Traning of the fuzzy Min-Max neura network.
(8 Hyperboxes belonging to two different classes class(B;) * class(By);
(b) Inclusion of pattern { Xy, class(B2)} in Bz implying overlgp with By;
(¢) Contraction of B; and B, with adjustment dong two coordinates,
(d) Contraction of B; and B, with adjustment along one coordinate.

It is easy to see that the contraction step of the fuzzy Min-Max network training resolves
only pat of the problem crested by the expanson of the hyperbox B,. Although the
hyperboxes B and B no longer overlap after the contraction has been completed (Figure 3(c)
and 3(d)), some part of the origina hyperbox B; remans included in B, and smilaly some
part of the hyperbox B, remans included in the contracted B;. The degree of this resdud
incluson depends on the contraction method that is chosen but it is never completdy
eiminated.

Another problem inherent to the contraction procedure is that it unnecessarily diminates
parts of the origind hyperboxes. These diminated portions are marked in Figure 3 with
diagond patern lines. The dimination of these pats of hyperboxes implies that the
contribution to the training of the Min-Max neurd network of the data contained in these
areas & nullified. If the neurd network training involves only one pass through the data, then



this is an irrevershble loss of information that demondrates itsdf in a degraded cdassfication
peformance. The problem can be somewhat dleviated by adlowing multiple presentations of
data in the training process or reducing the maximum size of hyperboxes. In ether case the
result is that additiond hyperboxes are created to cover the diminated portions of the origina
hyperboxes. Also, it is worth noting that the training pattern {X, class(Bz)} continues to be
misclassfied in spite of the contraction of the hyperboxes. This means that a 100% correct
classfication rate is not possible despite multiple-pass neurd network training.

The excluson/incdluson gpproach avoids the above problem by subtracting the overlapping
area marked in red (Figure 3(b)) from each of the hyperbox B and By. In this way the origind
hyperboxes do not lose any of the undisputed area of the pattern space and, in the same time,
the patterns contained in the excluson hyperbox are diminated from the relevant classes in
the set {c,,...,cp} and are assigned to class c,+1 (contentious area of the pattern space class). It
is worth naticing that the subtraction of the excluson hyperbox from hyperboxes B; and B;
produces a convex shape for each of the classes in a very efficient way (in terms of the
number of hyperboxes involved). The corresponding neurd network that implements the
excluson/induson dgorithm is presented in Figure 4.
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X' = Xt oo Xhl, X% = X, - X0
V=[V1,...Vm], W=[W1,...,Wn], S=[S1,...,Sn], T=[t1,...tm]
B=[Bq,...,.Bn], e=[€y,....&]

U=[U1o,..., Uzp, Ui(p+1);---; Umo,- - -,Ump, Um(p+1)]

R=[r10,..., F1p, F1(p+1);---; Fq0s--=Tap, Fq(p+1)]
c=[ c1,...,Cp,Cp+1]

Figure 4. Excluson/Incusion Fuzzy Classfication Network.

The additiond second-layer nodes e are formed adaptively in a Smilar fashion as for nodes
B. The minpoint and the max-point of the excluson hyperbox are identified when the
overlap test is podtive for two hyperboxes representing different classes. These vaues are
dored as new entries in matrix S and matrix T respectively. If the new excluson hyperbox
contains any of the previoudy identified excluson hyperboxes the included hyperboxes are
eliminated from the set e. The connections between the nodes e and nodes ¢ are binary vaues
dored in matrix R. The dementsof R are defined as follows:

il if g overlapped hyperbox of class ¢, and 1<k<p
he =11 if k= p+1 ©)
1o otherwise

Note thet the third layer has p+1 nodes [ ci,..., G, Gy+1] With the node c,. 1 representing the
new excluson hyperbox class. The output of the third-layer is now moderated by the output
from the excluson hyperbox nodes e and the vaues of matrix R. The trandfer function for the
third-layer nodes is defined as:



p+l m q
G = T@lx(r?lebjUjk - rri‘zalxqrik ) 9)
The second component in (9) cancds out the contribution from the overlapping
hyperboxes that belonged to different classes.

4. ADAPTATION OF HYPEERBOX SZE

The exduson/incduson dasdfication agorithm described above can be made fully data
driven i.e. the formation of incluson and excluson hyperboxes can proceed without reference
to any externd parameter such as a maximum hyperbox sze. While this is in generd a very
welcome feature, it dso means that for some “difficult” data sets the excluson hyperboxes
can become large relative to the incluson hyperboxes. If this is the case the proportion of
patterns that cannot be classfied as beonging to a specific class may become unacceptably
high. We therefore provide a feedback mechanism that rectifies this problem.

The proposed adaptive excduson/incluson classfication agorithm can be formdized as
follows

- Perform the exclusion/inclusion neural network training as described in Section 3

(without any constraint on the maximum size of hyperboxes;, Q £1);
- Evaluate the volume of all exclusion and inclusion hyperboxes,
- If the ratio of volumes of exclusion to inclusion hyperboxes exceeds a pre-specified

limit evaluate the parameter Q, as a product of the size of the maximum exclusion

hyperboxes and a convergence parameter a, 0<a <1;

- Repeat the exclusion/inclusion neural network training applying the constraint on the
maximum size of hyperboxes Q, to those patterns that fall inside the exclusion
hyperboxes identified in the previous iteration;

- Terminate when the ratio of exclusion to inclusion hyperboxes remains constant in two
consecutive iterations.

The choice of the parameter a enables a degree of control over the convergence rate of the
dgorithm. If a is smdl (eg. 0.2), the convergence is rapid but the find vaue of the parameter
Q, may be smdler than it is necessary to satisfy the requirement on the ratio of volumes of
excluson to incluson hyperboxes. This means that the classfication error may be larger than
could be obtained with larger a. On the other hand, if the parameter a is large (eg. 0.8) the
convergence is correspondingly dower and the parameter Q, can be found more accurately.

However, usng lager a may lead to identica raios of volumes of excluson to incluson
hyperboxes in consecutive iterations thus terminating the dgorithm prematurdy. The
consequence of that is that the number of patterns that cannot be classfied (fdl into excluson
hyperboxes) is larger than that obtandble with smdler a. We have found, through
experimentation, that for many practicadl deta classfication problems the choice of a=0.5
results in good convergence, good classfication accuracy and a smal number of patterns that
are not classfied.

We illudrate these condderations using a synthetic data set with two overlapping data
classes. Both training and test data sets are generated randomly and comprise of 100 data
points in each class with patterns uniformly distributed around the points (0.4, 0.6) and (0.7,
0.3) respectively. A representative example of such dataisgivenin Figure 5.
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Figure 5 Example of a gynthetic data set for the evdudion of the excluson/indusion
classfication dgorithm.

The evdudion of the adgptive exduson/induson dassficaion adgorithm is illusraed in
Figures 6-9. In each figure runs 1-10 correspond to the parameter a=0.2, runs 11-20
correspond to a=0.4, runs 21-30 correspond to a=0.6 and runs 31-40 correspond to a=0.8.
Four aspects are being assessed: the reduction of the ratio of the volume of excluson to
incluson hyperboxes (Figure 6), the improvement of the dasdfication accuracy (Figure 7),
the reduction of the number of unclassified patterns (Figure 8) and the increase of the number
of hyperboxes (Figure 9).
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Figure 6. Reduction of theratio of the volume of exclusion to incluson hyperboxes (the ratio
caculaed origindly for Q =1 is plotted as blue “0” marks and the ratio obtained after
adaptive shrinking of exclusion hyperboxesis plotted as green **’ marks)
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Figure 7. Improvement of the classification accuracy (the accuracy caculated originaly for
Q =1lisplotted as blue“0” marks and the accuracy attained after adaptive shrinking of
excluson hyperboxesis plotted as green **’ marks)
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Figure 8. Reduction of the number of unclassfied patterns (the origind number of
unclassfied patternsfor Q =1 is plotted as blue “0” marks and the number of unclassified
patterns after adaptive shrinking of excluson hyperboxesis plotted as green **’ marks)
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Figure 9. Increase of the number of hyperboxes (the origina number of hyperboxesfor Q =1
isplotted as blue “0” marks and the number of hyperboxes after adaptive shrinking of
excluson hyperboxes is plotted as green “*’ marks)



It is clear from the above reaults that the adaptive excluson/incluson dgorithm improves
on the origind exduson/induson cassfication in al respects With the new agorithm it is
possble to reduce the ratio of volumes of excluson to incluson hyperboxes, improve the
classfication accuracy and reduce the number of patterns that cannot be classfied. These
improvements are obtained a the cost of increesng the overal number of hyperboxes.
However, it is fortunate that the smalest increase of the number of hyperboxes occurs for the
same range of the parameter a for which one can obtain the maximum bendfits in terms of
classfication accuracy and the minimum number of uncdlassfied paiterns. Table 1 provides a
summary of the results obtained for 10 runs with random data sets for each of the four vaues
of the paameter a. The choice of a of aound 0.6 gives the best badance between
classfication accuracy and the interpretability of results.

Table 1. Summary of the performance improvement due to the adaptive excluson/incluson
classfication

Shrinking Ratio of newto | Ratioof newto | Ratioof newto | Ratio of new to
coefficient old old “correctly old “excluded old number of
VoExd/NVolind | dassfied’ from hyperboxes
classsfication”

0.2 0.7962 1.0141 0.7732 16.5000

0.4 0.4298 1.0557 0.4116 15.0667

0.6 0.4742 1.0513 0.3607 11.4333

0.8 0.8511 1.0131 0.8194 19.3000

In order to assess the vaue of the selective adaptation of hyperbox size described above we
compare it with an dternative adaptation drategy that applies the same condraint on the
maximum hyperbox sze to al hyperboxes formed in consecutive iterations. The dgorithm
implementing this dternative Srategy can be formdized asfollows

- Perform the exclusion/inclusion neural network training as described in Section 3
(without any constraint on the maximum size of hyperboxes, Q £1);

- Evaluate the volume of all exclusion and inclusion hyperboxes,

- If the ratio of volumes of exclusion to inclusion hyperboxes exceeds a pre-specified
limit reduce the value3 of the parameter Q by multiplying it by a convergence
parameter a, O<a <1,

- Repeat the exclusion/inclusion neural network training applying the constraint on the

maximum size of hyperboxes Q;
- Terminate when the ratio of exclusion to inclusion hyperboxes stops decreasing.

The evduation of this dternaive cdassfication agorithm follows the same procedure as
described above. We perform 10 training/testing cycles on randomly generated data for each
of the four vaues of the convergence parameter a. The results are summarized in Table 2 and
indicate that dthough it is possble to improve the classfication accuracy with the dterndive
adaptive exduson/incduson dassficaion this is achieved a a cost of a sgnificant increase of
the number of hyperboxes. Consequently the interpretability of such cdassfication is greetly
impeded. For example for the value of a=0.6 the average number of hyperboxes created to



cover the 200 patterns is 94 (31.333*3). This compares very unfavorably with only 34
hyperboxes generated by the dgorithm that agpplies sdectivdy the maximum hyperbox sSze

condtraint.

Table 2. Performance of the dternative adaptive exclusion/incluson dassification agorithm

Shrinking Ratiioof newto | Ratioof newto | Ratioof newto | Ratio of new to
coefficient old old “correctly old “excluded old number of
VolExd/Valind | classfied” from hyperboxes
classsfication”

0.2 0.0296 1.0625 0 38.2000

0.4 0.0458 1.0743 0.0035 43.9000

0.6 0.0531 1.0914 0 31.3333

0.8 0.0695 1.0729 0.0148 26.4000

5. CONCLUSIONS

The paper presented a modification of our earlier excluson/induson classfication agorithm
that baances the requirements of classfication accuracy and interpretability of results Two
dternative dgorithms for the adaptation of hyperbox size have been consdered and the one
based on sdective agpplication of the maximum hyperbox condraint has been found to
produce the best results. The conclusions derived from the assessment of the agorithm on the
randomly generated data set cary dso to the standard classfication problems such as defined
by the Idis data set.
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