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ABSTRACT 
  
Exclusion/inclusion hyperbox classification has demonstrated significant advantages in terms 
of its ability to cover topologically complex data structures with a relatively few hyperboxes 
thus resulting in the superior interpretability of classification results. However, the size of 
exclusion hyperboxes may occasionally become prohibitive if the data classes are grouped in 
a particularly unfavorable way in the pattern space.  In this study we consider adaptation of 
the maximum size of hyperboxes in response to the ratio of the exclusion to inclusion 
hyperboxes. Two alternative adaptation strategies are being considered: (i) the adaptation of 
the size of all hyperboxes and (ii) the adaptation of the size of hyperboxes that fall within the 
previously identified exclusion area.  The tradeoff between the number and the complexity of 
the classification rules implied by the two strategies is assessed on a set of sample 
classification problems. 
 
Key Words:  Pattern classification, exclusion/inclusion hyperboxes, min-max neural 
networks, information granulation, Information and knowledge management 
 
1. INTRODUCTION 

The use of fuzzy sets for the representation of real-life data has been proposed by Zadeh 
(1965) who pointed out that typically real-life data is not crisp but is characterized by a 
degree of membership. In this case the use of traditional set theory forces unrealistic binary 
classification decisions where the graded response is more appropriate. An early application 
of fuzzy sets to the pattern classification problem (Bellmann et al, 1966) proves the point that 
fuzzy sets represent an excellent tool simplifying the representation of complex boundaries 
between the pattern classes while retaining the full expressive power for the representation of 
the core area for each class. By having classes represented by fuzzy set membership 
functions it is possible to describe the degree to which a pattern belongs to one class or 
another.  

Bearing in mind that the purpose of classification is the enhancement of interpretability of 
data or, in other words, derivation of a good abstraction of such data the use of hyperbox 
fuzzy sets as a description of pattern classes provides clear advantages. Each hyperbox can be 
interpreted as a fuzzy rule. However, the use of a single hyperbox fuzzy set for each pattern 
class is too limiting in that the topology of the original data is frequently quite complex (and 
incompatible with the convex topology of the hyperbox). This limitation can be overcome by 
using a collection (union) of hyperboxes to cover each pattern class set (Simpson, 1992, 1993) 



(Gabrys et al, 2000). Clearly, the smaller the hyperboxes the more accurate cover of the class 
set can be obtained. Unfortunately, this comes at the expense of increasing the number of 
hyperboxes, thus eroding the original objective of interpretability of the classification result. 
We have therefore a task of balancing the requirements of accuracy of coverage of the 
original data (which translates on the minimization of misclassifications) with the 
interpretability of class sets composed of many hyperboxes. 

The solution originally proposed by Simpson (1992) was the optimization of a single 
parameter defining the maximum hyperbox size as a function of misclassification rate. 
However, the use of a single maximum hyperbox size is somewhat restrictive. For class sets 
that are well separated from each other the use of large hyperboxes is quite adequate while for 
the closely spaced class sets, with a complex partition boundary, there is a need for small 
hyperboxes, so as to avoid high misclassification rates. A more general solution proposed in 
(Gabrys et al, 2000), involved the adaptation of the size of individual hyperboxes so that it is 
possible to generate larger hyperboxes in some areas of the pattern space while in the other 
areas the hyperboxes are constrained to be small to maintain low misclassification rates. The 
adaptation procedure requires however several presentations of data to arrive at the optimum 
sizes of hyperbox sizes for the individual classes. 

The above two approaches both generate class sets as a union of hyperbox sets. A different 
approach that expresses class sets as a difference of two fuzzy sets has been proposed in 
(Bargiela et al, 2003). In this approach, the first set that is generated is a union of hyperboxes 
produced in the standard way (inclusion set) and the second set is a union of intersections of 
all hyperboxes that belong to different classes (exclusion set). By subtracting the exclusion 
hyperboxes from the inclusion ones it is possible to express complex topologies of the class 
set using fewer hyperboxes. Also, the three steps of the Min-Max clustering (Simpson, 1992; 
Gabrys et al, 2000) namely expansion, overlap test and contraction can be reduced to two: 
expansion and overlap tests.  

This paper builds on the result reported in (Bargiela et al, 2003) and explores the 
adaptation of the maximum hyperbox size as a function of the ratio of exclusion and inclusion 
hyperboxes. Section 2 gives an overview of the fuzzy Min-Max classification algorithm. In 
Section 3 we discuss problems inherent to the Min-Max algorithm and describe the exclusion-
inclusion fuzzy hyperbox classification algorithm. Section 4 describes the proposed 
adaptation algorithm and Section 5 provides numerical examples.  

2. FUZZY MIN-MAX CLASSIFICATION 

The fuzzy Min-Max classification neural networks are built using hyperbox fuzzy sets. A 
hyperbox defines a region in Rn, or more specifically in [0 1]n (since the data is normalized to 
[0 1]) and all patterns contained within the hyperbox have full class membership. A hyperbox 
B is fully defined by its minimum V and maximum W vertices. So that, B=[V , W] ⊂ [0 1]n 
with V, W ∈  [0 1]n. 

Fuzzy hyperbox B is described by a membership function (in addition to its minimum and 
maximum vertices), which maps the universe of discourse (X) into a unit interval 
 

B : X→ [0, 1]      (1) 
 

Formally, B(x) denotes a degree of membership that describes an extent to which x 
belongs to B. If B(x) =1 then we say that x fully belongs to B. If B(x) is equal to zero, x is 
fully excluded from B. The values of the membership function that are in-between 0 and 1 
represent a partial membership of x to B. The higher the membership grade, the stronger is the 
association of the given element to B.  In this paper we will use an alternative notation for the 
hyperbox membership function b(X, V, W)  which gives an explicit indication of the min- and 



max- points of the hyperbox. The hyperbox fuzzy set will then be denoted as B={X, V, W, 
b(X, V, W)}. Note that X is an input pattern that in general represents a class-labelled 
hyperbox in [0 1]n. To put it formally 

X={[Xl Xu], d}      (2) 
 
where Xl and Xu represent min and max points of the input hyperbox X and d∈{1,…,p} is the 
index of the classes that are present in the data set. 

While it is possible to define various hyperbox membership functions that satisfy the 
boundary conditions with regard to full inclusion and full exclusion, it is quite intuitive to 
adopt a function that ensures monotonic (linear) change in-between these extremes. Following 
the suggestion in (Sipmson, 1992) we adopt here 
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 is a two parameter function in which r represents  

the distance of the test pattern Xh from the hyperbox [V W] and 1 2[ , , , ]nγ γ γ γ= K  represents 
the gradient of change of the fuzzy membership function. This is illustrated in Figure 1. 
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Figure 1. One-dimensional (a) and two-dimensional (b) fuzzy membership function evaluated 

for a point input pattern Xh. 
 
 

The fuzzy Min-Max algorithm is initiated with a single point hyperbox [Vj Wj]=[0 0]. 
However, this hyperbox does not persist in the final solution. As the first input pattern 
Xh={[Xh

l Xh
u], d} is presented the initial hyperbox becomes [Vj Wj]= [Xh

l Xh
u]. Presentation of 

subsequent input patterns has an effect of creating new hyperboxes or modifying the size of 
the existing ones. A special case occurs when a new pattern falls inside an existing hyperbox 
in which case no modification to the hyperbox is needed.  
 
Hyperbox expansion: When the input pattern Xh is presented the fuzzy membership function 
for each hyperbox is evaluated. This creates a preference order for the inclusion of Xh in the 



existing hyperboxes. However the inclusion of the pattern is subject to two conditions: (a) the 
new pattern can only be included in the hyperbox if the class label of the pattern and the 
hyperbox are the same and (b) the size of the expanded hyperbox that includes the new 
pattern must not be greater in any dimension than the maximum permitted size. To put it 
formally the expansion procedure involves the following 
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with the size constraint in (4) defined as 
 

1,...,
(max( , ) min( , ))u l

ji hi ji hi
i n

w x v x
=
∀ − ≤ Θ    (5) 

 
If expansion can be accomplished then the hyperbox min and max points are updated as  
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The parameter Θ can either be a scalar, as suggested in [7], or a vector defining different 

maximum hyperbox sizes in different dimensions [4]. It can be shown that the latter can result 
in fewer hyperboxes defining each pattern class but requires some a-priori knowledge about 
the topology of individual class sets or multiple presentations of data to facilitate adaptation. 
 
Overlap test: The expansion of the hyperboxes can produce hyperbox overlap. The overlap of 
hyperboxes that have the same class labels does not present any problem but the overlap of 
hyperboxes with different class labels must be prevented since it would create ambiguous 
classification. The test adopted in [7] and [4] adopts the principle of minimal adjustment, 
where only the smallest overlap for one dimension is adjusted to resolve the overlap. This 
involves consideration of four cases for each dimension 
 

Case 1: ji ki ji kiv v w w< < <  

Case 2: ki ji ki jiv v w w< < <  

Case 3: ji ki ki jiv v w w< < <  

Case 4: ki ji ji kiv v w w< < <  
 

The minimum value of overlap is remembered together with the index i of the dimension, 
which is stored as variable ∆ . The procedure continues until no overlap is found for one of 
the dimensions (in which case there is no need for subsequent hyperbox contraction) or all 
dimensions have been tested.  
 
Hyperbox contraction: The minimum overlap identified in the previous step provides basis for 
the implementation of the contraction procedure. Depending on which case has been 
identified the contraction is implemented as follows: 
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The above three steps of the fuzzy Min-Max classification can be expressed as training of 

a three-layer neural network. The network, represented in Figure 2, has a simple feed-forward 
structure and grows adaptively according to the demands of the classification problem. The 
input layer has 2*n processing elements, the first n elements deal with the min point of the 
input hyperbox and the second n elements deal with the max point of the input hyperbox Xh = 
[ ]l u

h hX X . Each second-layer node represents a hyperbox fuzzy set where the connections of 
the first and second layers are the min-max points of the hyperbox including the given pattern 
and the transfer function is the hyperbox membership function. The connections are adjusted 
using the expansion, overlap test, contraction sequence described above. Note that the min 
points matrix V is modified only by the vector of lower bounds l

hX of the input pattern and the 

max points matrix W is adjusted in response to the vector of upper bounds u
hX .  
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Figure 2. The three-layer neural network implementation of the GFMM algorithm. 
 
The connections between the second- and third-layer nodes are binary values. They are stored 
in matrix U. The elements of U are defined as follows: 
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where Bj is the jth second-layer node and ck is the kth third-layer node. Each third-layer node 
represents a class. The output of the third-layer node represents the degree to which the input 
pattern Xh fits within the class k. The transfer function for each of the third-layer nodes is 
defined as 
 



1
max

m

k j jk
j

c B u
=

=      (7) 

 
for each of the p third-layer nodes. The outputs of the class layer nodes can be fuzzy when 
calculated using expression (7), or crisp when a value of one is assigned to the node with the 
largest ck and zero to the other nodes. 

3. EXCLUSION/INCLUSION CLASSIFICATION ALGORITHM 

Training of the Min-Max neural network involves adaptive construction of hyperboxes guided 
by the class labels. The input patterns are presented in a sequential manner and are checked 
for a possible inclusion in the existing hyperboxes. If the pattern is fully included in one of the 
hyperboxes no adjustment of the min- and max-point of the hyperbox is necessary, otherwise 
a hyperbox expansion is initiated. However, after expansion is accomplished it is necessary to 
perform an overlap test since it is possible that the expansion resulted in some areas of the 
pattern space belonging simultaneously to two distinct classes, thus contradicting the 
classification itself. If the overlap test is negative, the expanded hyperbox does not require 
any further adjustment and the next input pattern is being considered. If, on the other hand, 
the overlap test is positive the hyperbox contraction procedure is initiated. This involves 
subdivision of the hyperboxes along one or several overlapping coordinates and the 
consequent adjustment of the min- and max-points of the overlapping hyperboxes. However, 
the contraction procedure has an inherent weakness in that it inadvertently eliminates from the 
two hyperboxes some part of the pattern space that was unambiguous while in the same time 
retaining some of the contentious part of the pattern space in each of the hyperboxes. This is 
illustrated in Figure 3. 
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Figure 3. Training of the fuzzy Min-Max neural network. 

(a) Hyperboxes belonging to two different classes class(B1) ≠ class(B2); 
(b) Inclusion of pattern {Xh, class(B2)} in B2 implying overlap with B1;  
(c) Contraction of B1 and B2 with adjustment along two coordinates;  
(d) Contraction of B1 and B2 with adjustment along one coordinate. 

It is easy to see that the contraction step of the fuzzy Min-Max network training resolves 
only part of the problem created by the expansion of the hyperbox B2. Although the 
hyperboxes B1 and B2 no longer overlap after the contraction has been completed (Figure 3(c) 
and 3(d)), some part of the original hyperbox B1 remains included in B2 and similarly some 
part of the hyperbox B2 remains included in the contracted B1. The degree of this residual 
inclusion depends on the contraction method that is chosen but it is never completely 
eliminated.  

Another problem inherent to the contraction procedure is that it unnecessarily eliminates 
parts of the original hyperboxes. These eliminated portions are marked in Figure 3 with 
diagonal pattern lines. The elimination of these parts of hyperboxes implies that the 
contribution to the training of the Min-Max neural network of the data contained in these 
areas is nullified. If the neural network training involves only one pass through the data, then 



this is an irreversible loss of information that demonstrates itself in a degraded classification 
performance. The problem can be somewhat alleviated by allowing multiple presentations of 
data in the training process or reducing the maximum size of hyperboxes. In either case the 
result is that additional hyperboxes are created to cover the eliminated portions of the original 
hyperboxes. Also, it is worth noting that the training pattern {Xh, class(B2)} continues to be 
misclassified in spite of the contraction of the hyperboxes. This means that a 100% correct 
classification rate is not possible despite multiple-pass neural network training. 

The exclusion/inclusion approach avoids the above problem by subtracting the overlapping 
area marked in red (Figure 3(b)) from each of the hyperbox B1 and B2. In this way the original 
hyperboxes do not lose any of the undisputed area of the pattern space and, in the same time, 
the patterns contained in the exclusion hyperbox are eliminated from the relevant classes in 
the set {c1,…,cp} and are assigned to class cp+1 (contentious area of the pattern space class). It 
is worth noticing that the subtraction of the exclusion hyperbox from hyperboxes B1 and B2 
produces a convex shape for each of the classes in a very efficient way (in terms of the 
number of hyperboxes involved). The corresponding neural network that implements the 
exclusion/inclusion algorithm is presented in Figure 4. 
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Figure 4. Exclusion/Inclusion Fuzzy Classification Network. 
 
The additional second-layer nodes e are formed adaptively in a similar fashion as for nodes 

B. The min-point and the max-point of the exclusion hyperbox are identified when the 
overlap test is positive for two hyperboxes representing different classes. These values are 
stored as new entries in matrix S and matrix T respectively. If the new exclusion hyperbox 
contains any of the previously identified exclusion hyperboxes, the included hyperboxes are 
eliminated from the set e. The connections between the nodes e and nodes c are binary values 
stored in matrix R. The elements of R are defined as follows: 

1 1

1 1
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l k
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 (8) 

 
Note that the third layer has p+1 nodes [ c1,…, cp, cp+1] with the node cp+1 representing the 

new exclusion hyperbox class. The output of the third-layer is now moderated by the output 
from the exclusion hyperbox nodes e and the values of matrix R. The transfer function for the 
third-layer nodes is defined as: 



1

1 11
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k j jk i ik
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= ==
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The second component in (9) cancels out the contribution from the overlapping 
hyperboxes that belonged to different classes. 

4. ADAPTATION OF HYPEERBOX SIZE 

The exclusion/inclusion classification algorithm described above can be made fully data-
driven i.e. the formation of inclusion and exclusion hyperboxes can proceed without reference 
to any external parameter such as a maximum hyperbox size. While this is in general a very 
welcome feature, it also means that for some “difficult” data sets the exclusion hyperboxes 
can become large relative to the inclusion hyperboxes. If this is the case the proportion of 
patterns that cannot be classified as belonging to a specific class may become unacceptably 
high. We therefore provide a feedback mechanism that rectifies this problem. 

The proposed adaptive exclusion/inclusion classification algorithm can be formalized as 
follows: 
 

- Perform the exclusion/inclusion neural network training as described in Section 3 
(without any constraint on the maximum size of hyperboxes; 1≤Θ ); 

- Evaluate the volume of all exclusion and inclusion hyperboxes; 
- If the ratio of volumes of exclusion to inclusion hyperboxes exceeds a pre-specified 

limit evaluate the parameter xΘ  as a product of the size of the maximum exclusion 

hyperboxes and a convergence parameter 10, << αα ; 
- Repeat the exclusion/inclusion neural network training applying the constraint on the 

maximum size of hyperboxes xΘ  to those patterns that fall inside the exclusion 
hyperboxes identified in the previous iteration; 

- Terminate when the ratio of exclusion to inclusion hyperboxes remains constant in two 
consecutive iterations. 

 
The choice of the parameter α enables a degree of control over the convergence rate of the 

algorithm. If α is small (e.g. 0.2), the convergence is rapid but the final value of the parameter 
xΘ  may be smaller than it is necessary to satisfy the requirement on the ratio of volumes of 

exclusion to inclusion hyperboxes. This means that the classification error may be larger than 
could be obtained with larger α. On the other hand, if the parameter α is large (e.g. 0.8) the 
convergence is correspondingly slower and the parameter xΘ  can be found more accurately. 
However, using larger α may lead to identical ratios of volumes of exclusion to inclusion 
hyperboxes in consecutive iterations thus terminating the algorithm prematurely. The 
consequence of that is that the number of patterns that cannot be classified (fall into exclusion 
hyperboxes) is larger than that obtainable with smaller α. We have found, through 
experimentation, that for many practical data classification problems the choice of α=0.5 
results in good convergence, good classification accuracy and a small number of patterns that 
are not classified. 

We illustrate these considerations using a synthetic data set with two overlapping data 
classes. Both training and test data sets are generated randomly and comprise of 100 data 
points in each class with patterns uniformly distributed around the points (0.4, 0.6) and (0.7, 
0.3) respectively. A representative example of such data is given in Figure 5. 
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Figure 5. Example of a synthetic data set for the evaluation of the exclusion/inclusion 
classification algorithm.  
 

The evaluation of the adaptive exclusion/inclusion classification algorithm is illustrated in 
Figures 6-9. In each figure runs 1-10 correspond to the parameter α=0.2, runs 11-20 
correspond to α=0.4, runs 21-30 correspond to α=0.6 and runs 31-40 correspond to α=0.8. 
Four aspects are being assessed: the reduction of the ratio of the volume of exclusion to 
inclusion hyperboxes (Figure 6), the improvement of the classification accuracy (Figure 7), 
the reduction of the number of unclassified patterns (Figure 8) and the increase of the number 
of hyperboxes (Figure 9).  
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Figure 6. Reduction of the ratio of the volume of exclusion to inclusion hyperboxes (the ratio 
calculated originally for Θ =1 is plotted as blue “o” marks and the ratio obtained after 
adaptive shrinking of exclusion hyperboxes is plotted as green ‘*’ marks) 
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Figure 7. Improvement of the classification accuracy (the accuracy calculated originally for 
Θ =1 is plotted as blue “o” marks and the accuracy attained after adaptive shrinking of 
exclusion hyperboxes is plotted as green ‘*’ marks) 
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Figure 8. Reduction of the number of unclassified patterns (the original number of 
unclassified patterns for Θ =1 is plotted as blue “o” marks and the number of unclassified 
patterns after adaptive shrinking of exclusion hyperboxes is plotted as green ‘*’ marks) 
 

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

 
Figure 9. Increase of the number of hyperboxes (the original number of hyperboxes for Θ =1 
is plotted as blue “o” marks and the number of hyperboxes after adaptive shrinking of 
exclusion hyperboxes is plotted as green ‘*’ marks) 



 
It is clear from the above results that the adaptive exclusion/inclusion algorithm improves 

on the original exclusion/inclusion classification in all respects. With the new algorithm it is 
possible to reduce the ratio of volumes of exclusion to inclusion hyperboxes, improve the 
classification accuracy and reduce the number of patterns that cannot be classified. These 
improvements are obtained at the cost of increasing the overall number of hyperboxes. 
However, it is fortunate that the smallest increase of the number of hyperboxes occurs for the 
same range of the parameter α for which one can obtain the maximum benefits in terms of 
classification accuracy and the minimum number of unclassified patterns. Table 1 provides a 
summary of the results obtained for 10 runs with random data sets for each of the four values 
of the parameter α. The choice of α of around 0.6 gives the best balance between 
classification accuracy and the interpretability of results. 
 
Table 1. Summary of the performance improvement due to the adaptive exclusion/inclusion 
classification 
 

Shrinking 
coefficient 

Ratio of new to 
old 
VolExcl/VolIncl 

Ratio of new to 
old “correctly 
classified” 

Ratio of new to 
old “excluded 
from 
classsification” 

Ratio of new to 
old number of 
hyperboxes 

0.2 0.7962 1.0141 0.7732 16.5000 
0.4 0.4298 1.0557 0.4116 15.0667 
0.6 0.4742 1.0513 0.3607 11.4333 
0.8 0.8511 1.0131 0.8194 19.3000 

 
 

In order to assess the value of the selective adaptation of hyperbox size described above we 
compare it with an alternative adaptation strategy that applies the same constraint on the 
maximum hyperbox size to all hyperboxes formed in consecutive iterations. The algorithm 
implementing this alternative strategy can be formalized as follows: 
 
 

- Perform the exclusion/inclusion neural network training as described in Section 3 
(without any constraint on the maximum size of hyperboxes; 1≤Θ ); 

- Evaluate the volume of all exclusion and inclusion hyperboxes; 
- If the ratio of volumes of exclusion to inclusion hyperboxes exceeds a pre-specified 

limit reduce the value3 of the parameter Θ  by multiplying it by a convergence 
parameter 10, << αα ; 

- Repeat the exclusion/inclusion neural network training applying the constraint on the 
maximum size of hyperboxes Θ ; 

- Terminate when the ratio of exclusion to inclusion hyperboxes stops decreasing. 
 

The evaluation of this alternative classification algorithm follows the same procedure as 
described above. We perform 10 training/testing cycles on randomly generated data for each 
of the four values of the convergence parameter α. The results are summarized in Table 2 and 
indicate that although it is possible to improve the classification accuracy with the alternative 
adaptive exclusion/inclusion classification this is achieved at a cost of a significant increase of 
the number of hyperboxes. Consequently the interpretability of such classification is greatly 
impeded. For example for the value of a=0.6 the average number of hyperboxes created to 



cover the 200 patterns is 94 (31.333*3). This compares very unfavorably with only 34 
hyperboxes generated by the algorithm that applies selectively the maximum hyperbox size 
constraint. 
 
Table 2. Performance of the alternative adaptive exclusion/inclusion classification algorithm 
 

Shrinking 
coefficient 

Ratio of new to 
old 
VolExcl/VolIncl 

Ratio of new to 
old “correctly 
classified” 

Ratio of new to 
old “excluded 
from 
classsification” 

Ratio of new to 
old number of 
hyperboxes 

0.2 0.0296 1.0625 0 38.2000 
0.4 0.0458 1.0743 0.0035 43.9000 
0.6 0.0531 1.0914 0 31.3333 
0.8 0.0695 1.0729 0.0148 26.4000 

 
 
5. CONCLUSIONS 
 
The paper presented a modification of our earlier exclusion/inclusion classification algorithm 
that balances the requirements of classification accuracy and interpretability of results. Two 
alternative algorithms for the adaptation of hyperbox size have been considered and the one 
based on selective application of the maximum hyperbox constraint has been found to 
produce the best results. The conclusions derived from the assessment of the algorithm on the 
randomly generated data set carry also to the standard classification problems such as defined 
by the Idis data set.   
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