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Abstract. This paper discusses a neurocomputing system for operational decision support in water 
dis tribution networks. An analog neural network is used to calculate ‘loop-equations based’ state 
estimates. This is followed by the Confidence Limit Analysis (CLA) of the calculated estimates and 
the General Fuzzy Min-Max neural pattern classification/clustering (PC). The latter emulates the 
process of experience-building by human operators of water systems. We refer to the resulting 
neurocomputing system as CLA/PC.   
 Water distribution systems are representative of a large and important class of systems that are 
primarily driven by external, incompletely defined stimuli yet, the operation of which needs to be 
optimised according to some well defined criteria. The operational control of such systems presents 
considerable challenge to operators who need to develop the ability to `distil' the overall system 
state from a large number of fuzzy system snapshots (measurements and estimates) in order to 
decide on the appropriate control action. The software has been applied to a real-life water 
distribution networks and the representative subset of the results is provided. 

 
1. Introduction 
 
The operational control of water systems (and indeed many real-life systems) is a challenging task 
because it requires that operators develop a mental model of operation of a large-scale non-linear 
system which is subject to random disturbances (fluctuations of consumption) and which is 
monitored using relatively few measurements. The non-linearity of the system makes the outcome 
of every control action hugely dependent on the current operating state and the inaccuracy (or 
unavailability) of the various measurements compounds the difficulty of system control. 
 Given that the critical operating states (i.e. those that pose health or safety risks) occur 
relatively infrequently, the process of developing satisfactory level of expertise by system 
operators is quite lengthy and is dependent on the favourable combination of circumstances. It is 
for this reason that simulations have long been recognised as offering invaluable opportunity to 
generate scenarios that allow operators to be trained in the context of critical system states. One 
of the first real-time simulation systems for water industry was reported in [13], [2], [4] and was 
successfully utilised for the purpose of developing intuitive understanding of the variabilities of 
flows and pressures in water systems in a broad spectrum of operating conditions. The 
experience gained by trainee operators through interactive simulation was deemed to be 
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comparable to the understanding gained through extensive experimentation, involving opening fire 
hydrants at various network location, as documented in [6].  
 The CLA/PC software system described here is largely based on the original TCLAS 
software [3]  and it preserves its modular design, the realistic modelling of noisy and erroneous 
measurement data, the ability to modify metering configuration, the ability to switch between the 
various state estimation procedures in real-time, the ability to evaluate Confidence Limit intervals 
on state variables and the flexibility of graphical user interface. The new software incorporates all 
these features and introduces additional modules that provide computationally efficient neural 
network based Confidence Limit Analysis, [7], and system state classification and clustering, 
[10], which renders it applicable to large-scale systems. The overall software architecture is 
presented in Section 2. 
 It is important to emphasise that unlike in off-line applications, such as optimal network design 
or pump schedule optimisation, in on-line decision support the challenge is to estimate the system 
state in real time and preferably an order of magnitude faster so as to allow the `what-if' type of 
study by operators.  The neural state estimation  module provides an efficient computation engine 
while ensuring that all of the meters are used to their full advantage. This set of facilities is 
described in section 3.1.  
 One must recognise however that, although the mathematical model built into the state 
estimation may be accurate, the state estimates are based on input data that contain significant 
amount of uncertainty. This uncertainty has an impact on the accuracy with which the state 
estimates can be calculated. It is important, therefore that the system operators are given not only 
the values of flows and pressures in the network at any instant of time but also that they have 
some indication of how reliable these values are. The procedure for the quantification of the 
inaccuracy of the state estimates caused by the input data uncertainty has been developed in the 
late 80's and has been termed the Confidence Limit Analysis (CLA) [3]. Rather than a single 
deterministic state estimate, the CLA enables the calculation of a set of all feasible states 
corresponding to a given level of measurement uncertainty. The set is presented in the form of 
upper and lower bounds for individual variables, and hence provides limits on the potential error 
of each variable.  
 Once the pressure and flow estimates together with their confidence limits (interval estimates) 
are found it becomes possible to validate the measurements and the network topology. In this 
paper a neuro-fuzzy recognition system, utilising information from the state estimation and 
confidence limit analysis procedures, is proposed as a means of fault detection and identification 
in water distribution networks. The general fuzzy min-max (GFMM) neural network for clustering 
and classification [9] combines the ability of fuzzy systems to cope with uncertain and ambiguous 
data with the computational efficiency, learning and pattern recognition ability of neural nets. The 
neuro-fuzzy recognition approach to fault detection and identification  is described in Section 3.2. 
 
2. The simulation software  
 
 The original modular design of TCLAS software [2] and [4] has shown to offer flexible 
framework for the introduction of additional functionality associated with operational decision 
support. The main computational modules of the integrated CLA/PC environment are presented 
in Figure 1.  
 At the root of the package there is a Network Simulation module whose role is to mimic the 
actual behaviour of the water distribution network. In this module, mathematical models of 
elements like pipes, valves, pumps etc. combine exact information about the topology and the 
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physical parameters of the network (such as length, diameter, c-values etc.) with the 
deterministic values of inflows and consumptions and allow calculation of network's pressures 
and flows. In doing so, the network simulation module provides a facility for pressure/flow study 
of the network without recourse to physical experimentation. Using this module, leakages or pipe 
blockages can be simulated by updating the topology information rather than opening hydrants or 
opening/closing flow control valves. 
 The Telemetry Simulation module is intended to instil a degree of realism into the simulated 
readings of flows and pressures. Although the network simulation results are accurate in 
mathematical sense, it is quite clear that they reflect the idealised situation where unlimited 
number of measurements are available and the metering devices are of absolute accuracy. In 
practice neither is true so it is necessary to be explicit about meter positioning and to model both 
Gaussian and gross measurement errors. Indeed by doing so one can explore the relationship 
between the number, accuracy and the positioning of meters and the quality of subsequent state 
estimations. The telemetry simulation module can also be used to switch between the actual and 
simulated measurements so that the software system can be adapted to on-line operation.  

 
Network Simulation 

\/ 
Exact flows and pressures 

\/ 
Telemetry simulation 

\/ 
Realistic flows and pressure measurements (with noise) 

\/ 
State estimation with CLA 

\/ 
Estimates of flows and pressures with error bounds 

\/ 
Pattern classification 

\/ 
Decision support messages 

 
Figure 1. Outline of the software modules and the resulting data sets. 

 
The State Estimation and Confidence Limits Analysis module processes the telemetered 
data in two stages. First it finds the state estimate that minimises the discrepancies between the 
calculated and the actual meter readings (according to either least-squares or least-absolute-
values criterion) and subsequently it quantifies the confidence limits on the calculated states.  The 
combined state estimates with confidence limits provide a more robust indication of system 
performance in presence of uncertain input data. As it is the case with on-line state estimation, no 
information about any anomalous event simulated in the simulation/telemetry modules is being 
made available to the state estimation module. 
 Having obtained state estimates with confidence limits the Pattern Classification module 
attempts to abstract from the detailed numerical results by categorising the operating state into 
various sub-classes. This is equivalent to the process of accumulating experience by human 
operators and the progressively more robust classification provides basis for generating decision 
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support messages. The state classification functionality is particularly valuable in the context of 
emergency states such as leakages in the distribution network.  
 An access to simulation/estimation/classification results is provided through a powerful 
graphical user interface implemented in the Visualisation module. The simulations are executed in 
cycles that are triggered individually or are set to repeat at pre-specified time interval.  Each 
cycle involves the input data update, the execution of the four modules, and the output data 
update. The input data update takes into account all the changes (e.g. change of meter 
configuration, addition of a leakage, etc.) made by the user before the beginning of each new 
cycle. The output data update is concerned with the change of graphical display and suitable 
data fields representing the results of state estimation, confidence limit analysis and classification 
modules 
 
3. Neural system modelling and decision making 
 
3.1 State estimation 
The water system state estimation is, in essence, a process of solving an over-determined set of 
non-linear mass-balance or energy-conservation equations. The non-linearity of these equations 
means that it is necessary to linearise the equations around the current state and to apply 
Newton-Raphson iterations to find the solution to the original set of equations.  
A computationally efficient neural scheme has been proposed in [7] and is depicted in Fig. 2. 
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Figure 2. Neural network for solving sets of linear equations in Newton-Raphson iterations. 

 
The detailed form of the Jacobian matrix and the activation function depends on the choice of 
state variables. Here a set of flows in the spanning tree of the network has been used as state 
variables. The resulting loop equations gave rise to a robust state estimation [1]. 
 Once the state estimate for the average values of measurements is found, an interval enclosure 
on the system states is calculated using interval representation of measurements. A direct 
application of interval arithmetic results in very loose bounding so we adopt here a sensitivity 
analysis approach that produces much tighter bounds [3], [14]. This stage is referred to as 
Confidence Limit Analysis (CLA). The state estimates with their confidence limits are now the 
basic reference for operational decision making. 
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3.2 Learning of state estimate patterns 
The various operational states of the water network result in certain patterns of flows and 
pressure distribution in the network. For example a leakage in a particular pipe will result in the 
reduction of water pressure in the neighbourhood of the leaking pipe. Similarly, closing a specific 
valve will have an effect of re-distribution of the flow that was associated with this valve to the 
neighbouring pipes. So, in principle, discovering the new patterns of behaviour of the distribution 
network and creating operational control links for transition between the specific patterns of 
behaviour is what constitutes development of expertise by the system operators. In this work we 
adopt the Fuzzy Min-Max clustering/classification approach originally proposed by [11], [12] 
and generalised in [9]. The neural network that implements the Generalised Fuzzy Min-Max 
(GFMM) clustering/classification is a three-layer feedforward neural network that grows 
adaptively to meet the demands of the problem. The network is presented in Figure 3. Each node 
in the second layer represents a hyperbox fuzzy set. The connections of the first and second layer 
are the min-max points and the transfer function is the hyperbox membership function. Each node 
in the third (output) layer represents a class of behaviour of the system. The connections between 
the nodes of the second and third layer are binary values assuming 1 if the second layer hyperbox 
fuzzy set is a part of the class represented by the output layer node and 0 otherwise. The output 
of the third layer node is found by finding the maximum membership value of the constituent 
second layer hyperbox fuzzy set.  
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Figure 3. Three-layer neural network implementing GFMM classification/clustering 

 
 To improve the efficiency of the learning process the system has been designed as a 
hierarchical, two-level system. The first level consists of a GFMM neural network, which selects 
one of the n second level "experts". Input to the first level NN, I1, is a set of water supplies that 
characterise the time-of-day period of operation. The second level of the recognition system 
consists of n NNs. They are called "experts" since each of them is trained using only a part of 
training set and covers a distinctive part of the 24-hours operational period. The structure of the 
two-level hierarchical classification is presented in Figure 4. Input to the second level NNs, I2, 
comprises all the variables of the input pattern vector which are sensitive to the occurrence of an 
anomaly (e.g. heads in the load nodes or residuals representing mass balances at water network 
nodes). The output of the second level NNs is the classification of the water network state 
denoted by C.  
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Figure 4. Two-level neural classification scheme. 

 
4. Simulation-based study 
 
The neurocomputing system outlined above has been applied to a real-life water distribution 
network that has been reduced to 26 nodes and 38 pipes. The ‘normal’ operating state was 
defined as ‘no leakage in the system’ and 38 ‘special cases’ were defined as ‘leakage occurring 
in one of the system pipes’. No combined leakages in two or more pipes were considered.  The 
system state was estimated 10 times for 10 different levels of leakages in each of the 38 system 
pipes in each of the 24-hour periods. This gave rise to 24*38*10*10=91200 estimations plus 
24*10 estimations for the ‘normal’ operating state. 
 The results of these estimations were used as a training data for the classification neural 
network. The trained neural networks have been assessed on random input patterns representing 
various leakages in the system. The neural system demonstrated a robust performance with 
almost no misclassifications for leakages of 10 l/s or larger and some 10% misclassification for 
leakages of 5 l/s or larger. 
 
5. Conclusions 
 
This paper demonstrates how the basic water network simulation program has been integrated 
with confidence limits analysis and neural classification/clustering modules to deliver decision 
support functionality to water system operators. The pattern recognition approach to high-level 
system state diagnosis mimics the human information processing and provides a powerful 
abstraction tool that reduces the vast amount of detailed numerical information to qualitative 
description of system state. Although the software environment is primarily intended for 
operational decision support, it can also be used for operator training purposes. The package has 
been written entirely in MATLAB environment. The modular structure of this package enables 
future extensions/modifications of individual components without affecting the integrity of the 
overall software suite. 
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