
ERROR DETECTION FOR RELIABLE
DISTRIBUTED SIMULATIONS

Taha Osman, Andrzej Bargiela

Department of Computing
The Nottingham Trent University

Burton Street
Nottingham NG1 4BU

Email: taha@doc.ntu.ac.uk, andre@doc.ntu.ac.uk

ABSTRACT
The field of distributed computing has witnessed an

explosive expansion during the last decade. As the use of
distributed computing systems for large scale simulations
is growing, so is the requirement to increase their reliabil-
ity. Despite the effort put in designing and maintaining
distributed computing systems, non-negligible number of
faults occur either due to external influences (e.g power
failures), or indeed by reason of human error in the design
of the software or the underlying hardware. The detection
of these faults is the prerequisite of error recovery mecha-
nisms which are designed as separate software modules.
This paper presents Error Detection mechanism for Dis-
tributed Systems (EDDS), which offers an efficient user-
transparent mechanism for the detection of processor node
crashes and hardware transient failures (e.g bus errors,
segmentation faults, etc.). The system also enables integra-
tion of user-programmed error checks into the error detec-
tion mechanism. In addition, EDDS provides an
approximate measurement of the error latency to allow for
damage confinement and assessment. The current version
of EDDS was implemented using the PVM message pass-
ing interface and was tested on SPARC workstations run-
ning SunOS 4.1 and SOLARIS 2.4 and HP workstations
running HP-UX08.

1. INTRODUCTION
Computational complexity of many real-life problems

necessitates the use of distributed computing systems.
However, although the computing hardware is generally
reliable, for a multi-processor distributed systems the
probability of failure of an individual processing node is
non-negligible [VoDe93]. Hence, it is necessary to develop
mechanisms that prevent the waste of computations
accomplished on distributed processing nodes when one of
the nodes fails.

Many algorithms have been devised for fault-tolerant com-
puting: e.g multiplication of the underlying hardware
[BiDe94], full software redundancy [SiSw82], or check-
pointing & rollback techniques [ELZw92]. Whichever
fault-tolerance technique is used, the starting point, and

probably the most crucial is the detection of an erroneous
system state, i.e state which, in the absence of any correc-
tive actions, could lead to the failure of the system. Thus
the success of any fault tolerant system is critically
dependent upon the effectiveness of the techniques for
error detection. An important assertion of a fault tolerant
system is its ability to determine the latency of the error
(i.e the length of time between the occurrence of the error
and the appearance of a system failure [John89]). This is
vital for damage confinement and assessment, particularly
because in distributed systems the error might propagate
between system components (tasks, nodes) during the
delay between the occurrence of the error and its detection.

While extensive research has been carried out on fault-
injection & error detection in dedicated fault-tolerant sys-
tems, there is little reported work on error detection mech-
anisms (EDM) for distributed systems. Furthermore, most
of the fault-tolerance techniques for distributed systems
reported in the literature (e.g [ELZw92] [SeFo93]),
assume that the processor nodes are fail-fast, which is a
very restrictive assumption since it imposes that the error
detection mechanisms should have zero latency.

This paper presents EDDS, an Error Detection mecha-
nism for Distributed Systems. It offers an efficient user-
transparent mechanism for the detection of processor node
crashes, hardware transient failures (e.g bus errors, seg-
mentation faults, etc.), as well as offers the application
programmer the possibility to include his/her own error
checks in the program and report the failure to the error
detection mechanism. In addition, EDDS also provides an
approximate measurement of the error latency to be used
by subsequent error recovery procedures. The current ver-
sion of EDDS was implemented and tested on SPARC
workstations running SunOS 4.1 and SOLARIS 2.4 and
HP workstations running HP-UX08.
The outline of this paper is as follows: Section 2 describes
the system model; the message passing interface and sys-
tem implementation are described in Section 3; Section 4
is concerned with evaluating the system performance and
presents conclusions.

2. SYSTEM MODULE

2.1 Assumptions
We assume that the distributed system consists of a

number of nodes (processors) that can run concurrent user-
tasks. Nodes communicate via a message passing interface
over an asynchronous network.
We assume that the processing nodes are fail-silent, i.e
they only send correct messages, or nothing at all. How-
ever, we do not require the processes to be fail-safe, i.e
with a zero error latency. We also assume that a central
host will run the main error detection tasks. This central
host must be fault-tolerant, i.e the probability of its failure
is negligible. The required reliability of the central host
might be obtained by hardware duplication, but the detail
of achieving it is beyond the scope of this paper.

It’s worth pointing out that this paper does not describe
new (enhanced) error detection mechanisms at the CPU
(kernel) level. Instead it focuses on the use of system-pro-
vided EDMs and offering an opportunity to include appli-
cation-specific error checks, within an integrated Fault-
Tolerant distributed environment.

2.2 System Design
Throughout the work, emphasis was put on the simplic-

ity and modularity of the design to ensure that the EDDS
system can be smoothly integrated into a Fault-Tolerance
System that will provide process recovery from the
detected errors.

At the initialisation stage the EDDS accepts validated sys-
tem specifications (host & task specifications entered by
user are checked against the network configuration) from
the user/programmer as shown in Fig.1.
These specifications are then broadcasted to the Host and
user-tasks monitoring subtasks, they detect host
crashes_&_recovery and user-tasks failure_&_recovery
and subsequently update the active host and active task
tables. These tables are shared with the fault-tolerance sys-
tem recovery mechanism and are used in the recovery
process of the failed tasks. IDs of manually recovered
hosts are also fed to the system for them to be subse-
quently monitored by the EDDS.

Fig. 1. Context Diagram of the EDDS system

Monitor
Host
State

Monitor
User

Tasks

system spec’s

host ID, task ID,
task-host ID

ID’s of manually
recovered hosts

ID’s of tasks recovered by
fault-tolerant recovery mech.

input by user

sent by recovery mech.(RM)

Active
Host
Table

Active

Table
Task

add/remove
host id

add/remove
task id

shared
by RM

EDDS

2.2.1 Detecting Host Failures
Detection of host failures is based on a central host mon-

itoring task, running on the master host, which is responsi-
ble of the coordination of host crash detection in all the
system nodes. This central host monitoring task (Fig. 2)
periodically sends acknowledgment requests to all the
hosts in the system.
Each host must reply to the acknowledgment request
within a predefined time interval “tack_timeout”, other-
wise it will be considered by the monitoring task as having
“crashed”. If the reply is received at a latter acknowledg-
ment cycle (because of network delay) or if a message is
sent by the user declaring that the host has been manually
recovered, then the host is considered as “recovered”, and
it is added to the system host pool.

Fig. 2. The Host Monitoring Task

This approach makes effective use of fault-tolerant master-
host and it affords flexible mapping between the logical
and physical connectivity of nodes.

An alternative technique used in STAR [SeFo93], oper-
ates a logical ring of crash detection, where each host only
checks it’s immediate successor in the ring. Although this
technique reduces the message traffic, it introduces a limi-
tation associated with the dependence on network struc-
ture. The logical structuring of the crash detection ring
must match the physical connectivity of the nodes in the
network, which is not always possible, e.g the user/pro-
grammer might choose to omit certain nodes from the log-
ical structure of the distributed system.

2.2.2 Detecting User-Tasks Failures
Process failures caused by hardware errors (segmenta-

tion fault, bus error, etc.) are detected by the kernel (oper-
ating system) EDM. Upon the detection of an error the
kernel EDM kills the affected process with a signal
number that corresponds to the error type. Hence the user-
tasks monitoring process operates as follows: It initially
receives the ID’s of the active user-tasks, and waits indefi-
nitely for a task to exit. When a user-task exits, the moni-
toring process analyses the task exit status to determine
whether it exited normally or due to a failure. In both situ-
ations the task is removed from the active tasks table, but
in case of task failure, the fault is reported to the EDDS

.
MONITOR
HOST
STATE

SEND
ACKNOWLEDGEMENT
REQUEST TO HOST
WATCHDOG TASK

WAIT FOR
REPLY IN
TIME

tack_timeout

READ ACTIVE
HOST
TABLE

ADD RECOVERED
HOST ID
TO HOST
TABLE

REMOVE CRASHED
HOST ID
FROM HOST
TABLE

RECEIVE INFO
ABOUT MANUALLY

RECOVERED
HOSTS

REPORT
HOST

FAILURE

crashed
host id

recovered
host id

host
id

crashed
host id

recovered
host id

crashed
host id

system as illustrated in Fig. 3.
The monitoring process also receives notifications from
the fault-tolerance recovery mechanism about the recov-
ered tasks and includes their ID’s in the active tasks table.

Fig. 3. User-Task Monitoring

With regard to the User (Application Programmer)
organized error detection (e.g reversal checks, reasonable-
ness checks, structural checks, etc. see [AnLe81] pg. 115),
the application programmer must terminate the failed
process with an appropriate exit status so that the EDM
can identify the process as failed.

3. Implementation of the EDDS system

3.1 The message passing interface
In the interest of portability, the distributed computing

system used for the implementation of EDDS consists of a
network of workstations running PVM (Parallel Virtual
Machine) software. PVM permits a heterogeneous collec-
tion of Unix computers linked together by a network to be
used as a single large parallel computer. Thus large com-
putational problems can be solved more cost effectively by
using the aggregate power and memory of many comput-
ers. The software is very portable. The source, which is
available free through netlib, has been compiled on a range
of computing machines from laptops to super computers
[GeBe94].

PVM offers via a high-level interface most of the facilities
required for distributed programming: process control,
inter-task communication, and process synchronization in
a heterogeneous environment. The main PVM routines
used for the implementation of the EDDS system are listed
below:
pvm_spawn() - starts a new process on the specified host;
pvm_barrier() - blocks the calling process until all proc-
esses in a group have called it;
pvm_send() - sends a messages to another process
(including processes in remote hosts);
pvm_recv() - receives a message (the calling process is
blocked until msg is received);
pvm_nrecv() - non-blocking receive;
pvm_trecv() - receive with timeout;
pvm_notify() - requests notifications of a certain event in

.
MONITOR
USER
TASKS

WAIT FOR
TASK

TO EXIT

ANALYZE
EXIT
STATUS

REMOVE TASK
ID FROM

TASK RECORD

REPORT
TASK

FAILURE

RECEIVE COVERED
TASK ID's FROM

RECOVERY
MECHANIZM

ADD RECOVERED
TASK TO
HOST
TABLE

GET ID's
OF TASKS
ON CRASHED

HOST

exit_
status

task
id

normal exit
task id

failed
task id

failed
task id

recovered
task id

crashed
host id

failed
task id

the parallel machine.
The use of the PVM interface for process control and

interprocess communication requires a minimum level of
application code modifications. In addition to linking
applications with the EDDS library, the application code
must include two statements at the start and the end of the
main() function: pvm_mytid() and ed_pvm_exit(). The first
routine is necessary to enrol the task in the PVM system
and the second is for the EDDS to identify the task upon
successful termination.
The following subsection gives brief description of the
implementation of the EDDS system in a UNIX environ-
ment using the PVM message passing interface.

3.2 Terms and Definitions
The following terms are used in the functional description
of the EDDS system below (Figures 4 and 5):

active_hosts: nodes that are currently considered as “oper-
ative” in the distributed system;
tack_timeout: maximum acceptable interval to wait for
host acknowledgment. This variable is dynamically
updated reflecting the network load;
host_group: dynamic group of processes that contains the
Host_Monitoring task running on the master host and the
host_watchdog tasks running on active_hosts;
hn: number of active_hosts;
treply: response time of the previous host to the
ack._request;
active_tasks: user-tasks currently running in the distrib-
uted system;
received_message_type: identification tag attached to the
message;
Successful_Termination: user-task was executed success-
fully;
Wait_Exit: user-task exited;
Task_Recovered: failed user-task recovered by the fault-
toleracne recovery mechanism.

Functional description of the EDDS tasks is shown in
Figures 4, and 5. Host crash detection is initialised by
starting the host_watchdogs on the active hosts. The sole
task of a host_watchdog is to send acknowledgment mes-
sage to the central HostCrashDetection task upon the
receipt of an ack._request. pvm_barrier() is used to syn-
chronize communication between the HostCrashDetection
task and HostWatchdog tasks.
After each detection cycle, the EDDS scans for recovered
hosts. Firstly it checks if there is any pending acknowledg-
ments from hosts considered as crashed at the previous
detection cycle(s). The delay in receiving these messages
might have been caused by network overload, but the host
was considered failed regardless, because the delay
exceeded tack_timeout. Contact with the recovered host is
reinstated. Next the system checks if there is any notifica-
tion sent by the user about manually recovered hosts.

The recovered host is added to the active_hosts pool, and
the watchdog task is restarted on the recovered host.

Fig. 4a. Central Host Monitoring Task

Fig. 4b. Host Watchdog Task

Monitoring the user-tasks starts by executing
pvm_notify(). With TaskExit as an argument, this function
causes all user-tasks registered in the distributed system to
send notification messages with message tag “Wait_Exit”
to the calling task upon their exit. However, this notifica-
tion does not manifest itself if the task exited abnormally
or due to a fault. In order to overcome the last problem the
pvm_exit() routine has been overloaded (see section 3.1),
and it automatically sends a message tagged with
“Successful_Termination” declaring the successful execu-
tion of the user-task. Because PVM guarantees the order of
messages delivered from one source, if a Wait_Exit mes-
sage is received before Successful_Termination message
from the same task, this means that a failure occurred and
the task was abnormally aborted.

Initialize()
pvm_spawn(host_watchdog on active_hosts)
pvm_barrier(host_group, hn+1)
HostCrashDetection()

end Initialize

HostCrashDetection()
repeat

pvm_send(ack._requests to host_watchdogs in active_hosts)
for each active_host do

pvm_trecv(replies to ack._requests from host_watchdog /
in tack_timeout)

if reply not received then
remove host from active_host_table
report the host failure
set tack_timeout to zero

else
discount treply from tack_timeout

endif
end
ScanForRecoveredHosts()

until stopped
end HostCrashDetection

ScanForRecoveredHosts()
pvm_nrecv(delayed reply from failed (considered crashed) host)
if reply received then

add host to active_host_table
endif
pvm_nrecv(notification about manual host recovery from user)
if notification received then

pvm_spawn(host_watchdog on recovered host)
add host to active_host_table

endif
end ScanForRecoveredHosts

HostWatchDog()
pvm_barrier(host_group, n+1)
repeat

pvm_recv(ack._request from detection task on master host)
pvm_send(reply to the ack._request)

until stopped
end HostWatchDog

As can be noticed from Fig. 5, the monitoring task is mes-
sage driven, i.e managed by analysing messages sent
either by the user-task (Wait_Exit and
Successful_Termination) or the fault-tolerance recovery
mechanism (Task_Recovered).

Fig. 5. Monitoring User-Tasks

Taking into consideration the centralised error detection
and the delays to the message passing interface that might
be caused by the overload of the network, the error latency
of detecting task failures can be calculated by the formula:

(1)

where: E(Tedm) - average reaction time of the kernel
error detection mechanism;

σ(Tedm) - variance of the Tedm;
Trtt - estimated round-trip time from the

master host to active_hosts

The error latency of host crash detection is determined by
time intervals between the host crash detection cycles.

We envisage developing an error recovery mechanism
based on periodic checkpointing and roll-back techniques
[DeCu93], where the latency of the error will be crucial for
limiting the extent of the process roll-back to previous
checkpoints.

4. Test Results

The EDDS system performance was tested by simulat-
ing Hardware faults. Two Host crash simulations were
performed:
1) powering down one of the distributed system nodes
(SPARCstation IPC). In this case, the error latency was 1.5
seconds upon low network load (Trtt = 70 msec) and

MonitorUserTasks()
pvm_notify(about TaskExit of active_tasks with msg_type /

Wait_Exit)
repeat

pvm_recv(any message from active_tasks)
case received_message_type of :

Successful_Termination:
add task to normal_exits record
break

Wait_Exit:
if task in normal_exits record then
report successful task termination
else
report task failure
endif
remove task from active_task_table
break

Task_Recovered:
add task to active_task_table
pvm_notify(about TaskExit of recovered_task)
break

end case
until all tasks exited successfully

end MonitorUserTasks

Tlatency E Tedm() 3 σ× Tedm() Trtt+ +=

acknowledgment timeout of ‘20*Trtt’ (Tack_timeout =
1.4 sec);
2) disconnecting a processing node from the Ethernet. The
error latency was 1.03 seconds upon (Trtt = 51 msec,

Tack_timeout = 1.02 sec). When the connection was
restored, the EDDS system identified that the crash was
caused by network delay and added the “recovered” host
to the active host pool.

Three types of hardware transient failures were simulated
to test error detection in user tasks: segmentation fault, bus
error, and arithmetic exception.
Table 1 gives a representative sample of results for “bus
error”.

Since measurements in the above table were taken with
approximately the same network load implying the same
Trtt, then according to formula (1), the error latency indi-
cates the reaction time of the kernel EDM (Tedm).
It can be noted from table 1 that the nodes running the
same operating system have been found to have similar
error latency.

Conclusion and future work

This paper presented an efficient user-transparent error
detection mechanism for open distributed systems. The
detection mechanism covers processor node crashes and
hardware transient failures (e.g bus errors, segmentation
faults, etc.). The EDDS system also enables integration of
user-programmed error checks into the error detection
mechanism.
EDDS has been tested on a set of heterogeneous worksta-

Master Host &
Arch. / OS

Remote Host &
Arch. / OS

Latency
(seconds)

Host1
SPARC multiprocessor
SOLARIS 2.4

Host1

1.328

−″−
Host2
SPARCstation
SOLARIS 2.4

0.802

−″−
Host3
SPARCstation
SOLARIS 2.4

0.731

−″−
Host4
SPARCstation
SUNOS 4.2

0.291

−″−
Host5
SPARCstation
SUNOS 4.2

0.286

−″−
Host6
HP-APPOLO 400
HP-UX08

0.305

−″−
Host7
HP 340
HP-UX08

0.343

Table 1: Error Detection of User Tasks

tions connected by Ethernet and the results show that the
system is viable for open distributed computing systems.

We implemented a simple and efficient centralised error
detection structure, where the major remote-host & user-
process monitoring tasks run on a failure-free master host.
However, we assume that the processing nodes are fail-
silent, and therefore, we do not consider faults in the com-
munication link (e.g messages delivered with erroneous
content, or the sending of extra messages). We do how-
ever, cater for a possibility of propagation of errors in the
distributed computing system by allowing a non-zero error
latency.

Future work will involve integrating the EDDS system
into a “Fault-Tolerant Environment for Open Distributed
Processing” where mechanisms will be developed for error
recovery of failed user tasks.

REFRENCES

[AnLe81] T. Anderson and P.A. Lee 1981. “FAULT TORE-
ANCE Principles and Practice”. Prentice-Hall Int., London.

[BiDe94] B. Bieker and G. Deconink 1994. “Reconfigura-
tion and Checkpointing in Massively Parallel systems”. The
FTMPS project.

[DeCu93] G. Deconink, R. Cuyvers, and others 1993. “Sur-
vey of Checkpointing and Rollback Techniques”. ESAT-ACCA
Laboratory, Katholieke Universitei Leuven, Belgium.

[GeBe94] A. Geist, A. Beguelin, and others 1994. “PVM:
Parallel Virtual Machine. A Users’ Guide and Tutorial for Net-
worked Parallel Computing”. The MIT Press. Cambridge, Mas-
sachusetts.

[ElZw92] E. Elnozahy and W. Zwaenepoel 1992. “Mantheo:
Transparent Rollback-Recovery with Low Overhead, Limited
Rollback, and Fast Output Commit”. IEEE Transactions on
Computers, Vol. 41, No. 5, May 1992

[John89] B.W. Johnson 1989. “Design and Analysis of
Fault-Tolerant Digital Systems”. Addison Welsley Publishing
Company Inc.

[SeFo93] P. Sens and B. Folliot 1993. “STAR: a Fault Toler-
ant System for Distributed Applications”. Proc. of the 5th IEEE
Symposium on Parallel and Distributed Processing, Dallas,
Texas, pp. 656-660, Dec. 1993.

[SiSw82] D. Siewiorek and R. Swarz 1982. “The Theory
and Practice of Reliable System Design”. Digital Press, Bed-
ford, MA, 1982.

[VoDe93] J. Vounckx, G. Deconink, and others 1993. “The
FTMPS-Project: Design and Implementation of Fault-Tolerance
Techniques for Massively Parallel Systems”. Katholieke Univer-
sitei Leuven, Belgium.

	d16 copy 2
	d16 copy 3
	d16 copy
	d16.pdf
	d16

