


problem (the size of the map was made quite large on purpose with an intent to see 
how far the discrimination between the classes can be realized). The results point out 
that some classes are easy to discriminate (those are the classes we were able to find 
in the map) while others such as class require more attention when building their 
classifiers. Still at this size of the map we were not able to find a clearly distinguished 
region occupied by class-6. The distribution of the classes in the map reflects the 
diversity of the patterns belonging to the corresponding class; apparently class-5 is 
more “compact” than class-1. The mutual distribution of the classes is another 
interesting indicator as to the relationships between the classes; for instance class-1 
and class-2 are neighbors while class-7 is located quite distant from these two. 
Interestingly, the distribution of patterns across the map is quite uniform, Figure 11 
(b) meaning that all nodes of the map were involved in the organization of the data to 
a similar extent.  
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Figure 11. Distribution of classes in the SOM (a)  

and data density across the map (b). 
 
In both cases, each homogeneous region in the map identified by the designer or data 
analyst can be directly used towards the construction of information granules. When it 
comes to intervals, for each variable (feature) we determine the lowest and highest 
value in the set that form the bounds of the interval. In case of forming information 
granules in the form of fuzzy sets, we may consider fuzzy clustering or recursive 
information granulation.  
 

5 SOM GRANULATION OF ECG DATA  

The complex problem of computerized diagnostic classification of the 
electrocardiogram (ECG) signal is considered as a real world example. It uses a 
CORDA database, developed by J. Willems at the Medical Informatics Department of 
the University of Leuven, [12], consists of 3253 12 lead ECGs (2140 men and 1113 



women with a mean age of 49 ±  12 years). There were 12 standard leads (that is I, II, 
III, AVR, AVL, AVF, V1, V2, V3, V4, V5, V6). It consists only of single-disease 
cases with normal QRS duration and no conduction abnormality. Seven diagnostic 
classes have been considered: normal (N), left ventricular hypertrophy (LVH), right 
ventricular hypertrophy (RVH), biventricular hypertrophy (BVH), inferior (IMI) 
anterior (AMI) and combined (MIX) myocardial infarction.  
 
From the original ECG signal (12 standard leads acquired at 500 Hz for a period of 
about 10 seconds) a set of 540 (45 for each lead) primary measurements were 
computed with a computerized system, obtaining a first consistent data reduction. A 
second data reduction, according to a clinical selection and a statistical selection, has 
been performed obtaining a set of 39 ECG features. They include amplitudes and 
duration of the QRS and T waves, QRS and T axes, ST-segment elevation or 
depression, and the area under QRS and T waves.  
The same dataset has been used to establish the performance of statistical 
classification models [12] and to validate the performance of different architectures of 
neural networks [2], [11]. 
 
One can envision a certain hierarchy of the classes of the signals that could be helpful 
in understanding the results of self-organization. The diagnostic class of biventricular 
hypertrophy (BVH) then includes both LVH and RVH, and consequently the three 
classes BVH, LVH and RVH are not completely independent. This means that a 
classification of LVH + RVH is equivalent to BVH , and that a BVH patient classified 
as only LVH or RVH represents a partial discrepancy. Analogous considerations are 
valid for the diagnostic class of combined  myocardial infarction MIX with respect 
with AMI and IMI. 
 
The size of the map was experimented with. Finally, the size of 25 by 25, Figure 14 
comes as a reasonable choice considering the size of the data set as well as the 
interpretation results one can derive (it is worth noting that this description of data is 
an interactive process so the user has control over the granularity of the descriptors 
visible through the map). The data were normalized with the use of a logistic 
transformation. 
 
There are of immediate and important observations one can make on the basis of a 
visual inspection of the self-organizing map (especially the region map and the maps 
of the individual features). We may quantify the groups in a more quantitative manner 
as summarized in Table 1. These groups of data are described in terms of class 
homogeneity, total size, and fuzzy sets – information granules capturing the data 
beneath the selected portion of the map.  
 
Several interesting observations can be drawn 

• The homogeneous regions in the SOM, their size and location vis-à-vis other 
regions help identify relationships between the classes of ECG signals.  
In particular, a region (cluster) capturing normal signals (region C in Figure 
15) is quite compact and shows a high level of homogeneity. The region 
denoted by A (that involves AMI) is quite extended and is quite distant from 
other regions. Similarly, region B (that captures a mixture of IMI and MIX) is 
apart from the other regions and occupies an entire region on the upper right 



corner of the map. A very different behavior can be observed for the three 
other regions, that is E, H, and F. These are close neighbors and all of them 
capture two classes RVH and BVH but in a different mix. When moving along 
the map and starting from the first one (E), there is an evident mix of BVH and 
RVH. In the sequel, the next group (H) is dominated by RVH while the group 
identified as F has a similar dominance by RVH with some BVH.  

 
• The identification of the groups in the map can be viewed as a descriptive data 

analysis with an ultimate goal to capture the essence of the data. In this case 
we are interested in building concise and homogeneous descriptors of the ECG 
classes. The map tells us what is most likely as to the occurrence of “plain” or 
mixed classes of patterns. Obviously, it is easy to describe (and discriminate) 
between the class of normal signals (N) and others while discriminating 
between class IMI and MIX (as shown in region B) will be a difficult task (no 
matter what classifiers we are interested in). It is easy to discriminate between 
class RVH when dealing with region H however doing the same for the region 
E (where there is an evident mix of RVH and BVH) will be a significant 
classification challenge. 
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Figure 14.  The self-organizing map (size of 25 by 25) and several clusters identified 

for further analysis. 
 

The series of maps for each feature (feature maps) as shown in Figure 16 is important 
source of information that helps us visualize relationships between the features of the 
signal. A quick visual inspection helps us notice that some of them are highly related 
(the corresponding maps are very similar). For instance, 

• the parameters A21 (Q amplitude in V3) and A22 (Q duration in V3) as well 
as partially A19 (Q duration in V1) exhibit similar behavior, showing a region 
with high values in the upper right corner, with a correspondence (in 
agreement) with the classification of region B.  

• some qualitative similarities can be seen considering the parameters A27(ST 
elevation in V6), A28 (ST slope in V6), and A10 (ST elevation in II).  

• a qualitative similarity is shown by A14 (area under T wave in lead AVR) and 
A13 (ST elevation at 80 ms after J point of lead AVR)  

 



  
Figure 15. Feature maps of the ECG patterns; the features are denoted as a1, a2, …, 

a39. The brightness scale shows the values of the features as they are distributed 
across the map. 

 
Figure 16 displays a density map illustrating how the ECG patterns populate the 
SOM. In general, the data become distributed across the map quite uniformly with an 
exception of few entries. Nevertheless the differences are not very substantial. The 
density map states that there are no any problems with the learning as there were no 
particularly “hyperactive” neurons during the learning process. 

 
 



Figure 16. Density map associated with the SOM – the brighter the color the higher 
the number of the data points allocated to the corresponding neuron. The range of 

these numbers is from 9 (the darkest location of the map) to 0 (the brightest entries of 
the map). 

 
 

Region of 
the map 

Number of 
patterns 

Homogeneity 
(number of patterns 

across classes) 

Description 
of the region 

A 248 

 

Occupied by 
class “AMI” 
with some 
patterns from 
class “MIX” 

B 93 

 

Class “IMI” 
and “MIX “ 
are 
represented 
in almost 
equal 
mixture 

C 119 
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Clas “N” 
dominates 
this cluster 

D 106 

 

Class”BVH” 
with some 
data coming 
from 
class”RVH” 

E 48 

 

Class ‘BVH” 
and “RVH” 
in an almost 
equal mix 
with a few 
patterns in 
class”LVH” 
and “AMI” 

F 28 

 

Class”RVH” 
dominates 
here with 
some 
patterns 
coming from 
class ‘BVH” 



G 23 

 

Class”LVH” 
with a few 
patterns in 
class”N” 

H 28 

 

Class”RVH” 
with few 
patterns 
belonging to 
class “BVH” 

 
 

Table 1. Characteristics of the granular descriptors of the ECG classes. 
 

6 CONCLUSIONS  

Data analysis cast in the setting of information granules arises as an interesting and 
attractive option of data exploration. This chapter has concentrated on the use of self-
organizing maps as a vehicle of user-centric interactive data analysis. It is worth 
underlining that while the data analyst identifies homogeneous regions of the map that 
are afterwards converted into information granules, this needs to be treated as a 
preliminary phase of any model design. We can view these granules as a blueprint 
(conceptual skeleton) of any model. The size of the granules over which it is formed 
implies its specificity/generality and a level of necessary details one intends to capture 
within the model. In the sequel, the model is subject to further parametric 
optimization.  
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