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introduced that use a linear approximation of the network model. The results
obtained using these algorithms are compared to those of Monte Carlo sim-
ulation. An account of the computational performance of all the methods
discussed is also given in this section. Some practical aspects of confidence
limit analysis are then discussed, after which conclusions are reported.

UNCERTAINTY IN WATER SYSTEMS

The relationship between the quality of measurement data and the quality
of simulation results is a function of several factors. These include the meter
type and accuracy, the location of the metering sites, and the topology of
the water network. In this section the interrelation of all these factors is
discussed.

The measurement data come from two sources. Flow and pressure meters
placed throughout the network relay observations via the telemetry system.
These provide the most accurate type of data but unfortunately their numbers
are often restricted. As a result, estimates of nodal consumption are heavily
relied upon. It is these data that introduce much of the uncertainty to the
system. It is possible to obtain accurate demand predictions for the network
as a whole (Bargiela and Sterling 1985) but estimating nodal consumptions
for nodes where the population is low is more difficult. If possible, the num-
ber of meters used in the telemetry system should be increased. In this way,
a greater level of accuracy can be achieved reducing the reliance on the less
accurate pseudomeasurement data.

Generally, the addition of a meter to the network will increase the ac-
curacy of the state estimates (in some special circumstances this may not be
the case; this situation is discussed later in this section). As an example,
consider the effect of adding a pressure meter at a node in the network. It
is clear that the head at this node can now be estimated more accurately,
provided, of course, the meter is accurate enough. The head estimates in the
neighboring nodes will also show an improvement but the amount of im-
provement will decrease as distance from the meter increases. The exact
extent of the meter’s region of influence will be dependent on, among other
things, the accuracy of the nodal consumption estimates in the neighboring
nodes, the accuracy of the flow estimates in this area, pipe sizes, and the
presence of any other meters near by. The flow variables close to the new
head meter may also show an improvement of accuracy though this will be
less marked. Similarly, the addition of a flow meter to the network will
reduce the potential error in the neighboring flow and head variable esti-
mates, although the region of influence may have a different shape and the
flow and pressure variables will be affected to a different degree.

These effects are demonstrated on a small network illustrated in Fig. 1.
Full network data are given in Tables 1, 2, and 3. Figs. 2 and 3 show the
effect of adding a head meter. On these diagrams, the values by the nodes
represent error bounds for the pressure variables, that is, the maximum amount
by which the state estimate for these variables may be in error. Similarly,
the values by the pipes represent the flow error bounds. In both cases the
error bounds were calculated by enumerating the feasible (satisfying mass
balance constraints) measurement values to obtain maximum and minimum
values for each variable. In the first diagram (Fig. 2), the network has just
a minimal measurement set consisting of one reference head measurement
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FIG. 1. Pipe Network Used for Results for Cases (ii)—(v). Length, Diameter and
C-Value of Each Pipe Are Given in Table 3

TABLE 1. State Estimates for Figs. 2, 3, 4, and 5

Figs. 2 and 3 Figs. 4 and 5
- Accuracy Accuracy Accuracy | Accuracy
Node Head Fig. 2 Fig. 3 Head Fig. 4 Fig 5
(1) 2) () “) (5 (6) @
1 100.00 0.50 m 0.32m 100.00 0.50 m 0.22 m
2 99.79 0.5 m 031 m 99.79 0.51m 0.21'm
3 99.15 0.86 m 0.67 m 99.38 0.62 m 0.15m
4 99.75 0.56 m 0.26 m 99.70 0.54 m 022 m
S 99.60 0.64 m 0.34 m 99.54 0.62 m 0.3l m
6 99.78 0.59 m 0.23 m 99.72 0.53 m 0.21 m
7 99.98 0.60 m 0.24 m 99.92 0.53 m 0.22 m
8 99.54 0.72 m 0.10 m 99.42 0.62 m 0.10 m
TABLE 2. Network Data
Fig. 2 and Fig. 3 Fig. 4 and Fig. 5
Accuracy Accuracy Accuracy Accuracy
Pipe Flow Fig. 2 Fig. 3 Flow Fig. 4 Fig. 5
(1 (2) (3) 4) () (6) 7
6-4 7.00 4.30 L/s 4.30 L/s 5.38 2.74 L/s 2.74 L/s
4-2 —-3.00 2.30 L/s 2.30L/s -4.63 0.94 L/s 0.94 L/s
2-3 7.00 | 2.10L/s 2.10 L/s 535 | 0.88L/s | 0.88L/s
2-1 -10.00 0.20 L/s 0.20 L/s —10.00 0.20 L/s 0.20 L/s
4-5 5.00 1.50 L/s 1.50 L/s 5.00 1.50 L/s 1.50 L/s
6-8 13.00 390 L/s 3.90 L/s 14.65 294 L/s 294 L/s
6-7 —20.00 0.40 L/s 0.40 L/s -20.00 0.40 L/s 0.40 L/s
3-8 -1.57 2.28 L/s 228 L/s

Note: Pipe 3-8 is only included in the network shown in Fig. 4 and Fig. 5.
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TABLE 3. Pipe Data for Figs. 1-5

Pipe Length (m) Diameter (m) C-value
(1) (2 (3) 4
64 1,000.0 0.30 170.0
4-2 650.0 0.30 50.0
2-3 110.0 0.15 60.0
2-1 400.0 0.20 145.0
4-5 500.0 0.20 100.0
6-8 400.0 0.25 100.0
6-7 1,000.0 0.30 . 170.0
3-8 500.0 0.20 100.0

Note: Pipe 3-8 only appears in Figs. 4 and 5.

H - head measurement

1 - inflow measurement

FIG. 2. Error Bounds for Tree Network with Minimal Measurement Set

H# - head measurement

I - inflow measurement

FIG. 3. Error Bounds for Minimal Measurement Set with Addition of Head Meter
at8
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W - head measurement

I - inflow measureaent

FIG. 4. Error Bounds for Minimal Measurement Set on Loop Network

at node 1, inflow measurements at nodes 1 and 7 and nodal consumption
estimates for the remaining load nodes. In Fig. 3, a second, more accurate
head meter is added at node 8. This gives a measurement accuracy of +0.10
m. The new meter has a significant effect on the head errors, the improve-
ment being strongest in nodes closest to the new meter site. With the new,
more accurate meter used in node 8, the original meter at node 1 is effec-
tively redundant. This is because the pressure at node 1 can be estimated
more accurately using the pressure measurement at node 8 than it can be
measured by the original meter.

In a tree-like network, as is shown in Figs. 2 and 3, the error bounds are
quite simple to calculate but in the more realistic situation of a looped net-
work, computations are much more involved. The addition of a single pipe
from node 3 to node 8 forming a loop in the system means that all of the
measurement data has to be considered simultaneously. This is because the
pressure drop around the loop must be zero. For this augmented network,
the Monte Carlo method was used to obtain the error bounds and the results
are presented in Figs. 4 and 5. The same trend is again apparent—the errors

H - head measurement

1 - inflow measurement

FIG. 5. Error Bounds for Minimal Measurement Set with Addition of Head Meter
at Node 8 on Loop Network
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increase as the distance from the more accurate meters increases—but the
exact values of the improvements obtained are less obvious. Comparing Figs.
4 and 5 with 2 and 3 shows that the topology of the network has a great
influence on the accuracy of calculated state variables. The two networks
shown only differ by one pipe but the error bounds are significantly changed.

The number of real meters in the measurement system and their accuracy
are not the only factors involved. The distribution of these meters throughout
the network is also very important. If all the meters are placed in one region
of the network, then it will be possible to obtain accurate state estimates for
variables in this region but the accuracy of variables in other regions may
be poor. This distribution effect is complicated further by the network’s to-
pology. For example, a meter placed in a weakly-connected region of the
network will have little influence on the accuracy of state variables elsewhere
in the network. Similarly, a flow meter may have a greater impact if it is
placed in a pipe that has a large flow, since this will mean that a larger
proportion of the water flowing through the network is being measured. A
combination of meter distribution, meter accuracy, and network topology
may mean that certain meters are redundant. That is to say, the accuracy of
system variables will not be adversely affected by the removal of such a
meter. This situation occurs when a meter is measuring a variable that can
be estimated more accurately using data from other meters in its vicinity.

The operating state of the system can have a large effect on the way in
which the measurement uncertainty is passed on to the state estimates. In
many water networks, the flow pattern can change considerably throughout
a day’s operation. The accuracy of nodal consumption estimates may sim-
ilarly alter as a result of these changes. Also some flow meters have an
accuracy that is dependent, in absolute terms, on the size of the flow they
are measuring. Consequently, one particular measurement configuration may
provide differing levels of accuracy under different operating conditions or
at different times of the day.

STATE ESTIMATION AND NETWORK MODEL

This section gives a brief explanation of the state estimation procedure
employed in processing telemetered data.

A water distribution network consists of a collection of reservoirs, pipes,
pumps, and valves connected to form a network. Depending on the required
accuracy of the modeling, an individual link in the network may represent
either a single hydraulic element (pipe, pump, or valve, for instance), or a
group of elements lumped together. Similarly, network nodes can represent
either physical junctions between the various elements or subnetworks across
which there is a relatively small pressure drop. The end result is a network
of nodes connected by hydraulic elements for which the following two rules
are satisfied.

Mass Balance Rule

The sum of inflows, outflows, and a relative change of the stored volume
of water is equal to zero for every node and for every subnetwork of the
original network.
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Head Loss Rule

The total pressure drop around a loop of links in the network is equal to
zero.

Using these rules and the functional relationships between flow and pres-
sure drop for every link of the network, both measurements and pseudo-
measurements can be expressed in terms of nodal pressures and system sup-
plies. This takes the form of a series of network equations which can be
represented by

where x = the state vector representing pressures in all network nodes and
inflows from all source nodes; z = the measurement vector representing both
the real measurements and pseudomeasurements, and g(.) is a vector func-
tion combining all of the network equations. Eq. 1 is called the network
model.

The nonlinearity of g(.) means that the network model cannot be solved
directly and an iterative technique must be employed. This starts with an
initial guess for the state vector which is progressively refined until a vector
x is found that satisfies Eq. 1 as closely as possible. The iterative procedure
requires at each step:

1. A linearization of the nonlinear vector function g(.) around the current es-
timate for the state vector. This takes the form

Z= 28X F T dX o )

where k = the index of steps in the iteration procedure; x* = the current estimate
for the state vector; z = the measurement vector; g(x*) = the vector function
g(.) evaluated at x*; J = the Jacobian matrix evaluated at x*; J = [9g(x)]/dx);
and dx = the correction vector.

2. A solution of Eq. 2, which is a system of linear equations, to obtain the
correction vector dx. The next estimate for the state of the system can be cal-
culated from Eq. 3:

There are various state estimators, each using a different numerical tech-
nique to solve Eq. 2. A common feature they all share is that the compu-
tation is done for a fixed measurement vector z which does not change
throughout the computation. This is a serious weakness of these determin-
istic estimators since it implies that the calculated flows and pressures will
not hold if, as is usually the case, some of the nodal consumptions are in
error. The situation may become critical if the network contains pressure-
controlled or flow-controlled devices such as pressure- or flow-reducing valves,
one-way valves or altitude-controlled valves. A deterministic state estimate,
based on inaccurate measurement data, may indicate that these devices are
in one operational state, when they are, in fact, in the opposite state. Con-
sequently, an operator relying on the deterministic estimates would be misled
about the topology of the system that is implied by the closed/open status
of the valves.

The algorithms presented in this paper ovecome the limitations of deter-
ministic state estimators by calculating ranges of feasible values attainable
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h,i - head and inflow meters for WSl

H,I,f = head, inflow and flow meters for MS2

FIG. 6. Test Network

by flows and pressures within the network under a given variation of real
measurements and pseudomeasurements. These results have a dual appli-
cation. First, they provide guidance on the required accuracy of measure-
ments and second, they enable the real-time identification of all operational

states in which the operator could be misled by the results of by the deter-

ministic algorithms.

MONTE CARLO SIMULATION

In normal use, deterministic state estimators produce one state estimate
for one measurement vector. Used in this way, they give no indication of
how a state estimate may be affected by the fuzziness of input data. Alter-
natively, if a deterministic state estimator is used repeatedly for a whole
range of measurement vectors, then some indications of state estimate vari-
ance is provided. This idea forms the basis of the Monte Carlo approach to
confidence limit analysis in water systems.

The uncertainty in the measurement data means that the measurement vec-
tor, instead of being single valued, can take any one of a whole range of
feasible states. In the Monte Carlo method, a sequence of measurement vec-
tors is chosen randomly from within this range. Each of these is then tested
against the balance constraint to ensure that the amount of water leaving the
network, as defined by the nodal consumption measurements, is equal to the
amount of water entering the network, as defined by the inflow measure-
ments. Using this randomly generated measurement vector, a deterministic
state estimate is calculated. Each state estimate, x, would then be checked
to see that it satisfies all of the constraints specified by the mathematical
model of the system (Eq. 1); if not, then it must be rejected. Otherwise it
is a feasible state estimate and can be used to update the set of feasible state
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TABLE 4. Typical State Estimates and Errors—Heads

Measurement Set 1* Measurement Set 2*

Head Error 1° Error 2° Error 3° Error 2° Error 3¢
Node (m) (m) (m) (m) (m) (m)
(1) (2) (3) (4) (5) (6) (7)
1 140.11 2.26 2.14 2.15 0.47 0.47
8 140.02 2.07 1.95 1.96 0.10 0.10
22 140.29 1.29 1.28 1.30 0.52 0.58
38 140.33 1.27 1.27 1.27 0.53 0.63
45 140.02 1.36 1.37 1.37 0.63 0.67
53 140.92 1.20 1.22 1.22 0.10 0.10
62 142.84 0.57 0.59 0.59 0.37 0.34
77 140.37 1.33 1.29 1.30 0.10 0.10
78 140.35 1.32 1.28 1.29 0.16 0.15
160 144.77 0.03 0.03 0.03 0.03 0.03

*See Fig. 6.

"The state error bounds produced for this measurement set using the Monte Carlo method.
“The state error bounds produced using the sensitivity matrix method.
“The state error bounds produced using the optimization method.

estimates. At the start of the Monte Carlo simulation, the state error vector
is zero. As soon as a feasible state estimate is found, it can be used to define
the current maximum and minimum feasible values for each state variable.
Any new feasible state estimate found is compared against the maximum
and minimum values; if, for any state variable, either of these bounds is
violated, new maxima can be defined. In this way the error bounds for the
state variables can be gradually increased until, after many trials, their limits

TABLE 5. Typical State Estimates and Errors—Flows

Measurement Set 1* Measurement Set 2*

Flow Error 1° Error 2° Error 3¢ Error 2° Error 3¢
Pipe (L/s) (L/s) (L/s) (L/s) (L/s) (L/s)
(1) (2) (3) (4) (5) (6) (7)
1-2 4.77 1.91 1.91 1.91 1.91 1.91
11-10 -2.10 1.55 1.48 1.47 1.31 1.33
18-19 -3.49 5.91 6.05 6.05 4.39 4.34
22-69 13.40 19.33 20.25 20.48 0.50 0.50
38-39 0.00 17.09 21.52 21.55 0.50 0.50
36-69 —-12.25 18.59 19.38 19.38 1.00 1.17
61-76 -1.45 1.00 1.12 1.12 1.23 1.24
58-57 —24.06 6.91 7.03 7.05 0.50 0.50
46-42 —-15.89 11.21 11.74 11.85 4.98 4.98
60-160 -6.63 4.88 4.72 4.72 3.53 3.53

“See Fig. 6.

"The state error bounds produced for this measurement set using the Monte Carlo method.
“The state error bounds produced using the sensitivity matrix method.

“The state error bounds produced using the optimization method.
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are asymptotically reached. In a system with many variables, as is the case
for water distribution networks, many trials are required. Since each trial
requires the calculation of a state estimate, this method is computationally
slow. When the total number of measurements and pseudomeasurements ex-
ceeds the number of state variables, a large proportion of the trials has to
be rejected due to measurement inconsistency. This further adds to the com-
putation time.

Results produced by a Monte Carlo simulation on the test network, shown
in Fig. 6, are presented in Tables 4 and 5. The full description of the network
parameters can be found in Bargiela (1985b). It should be noted that because
of a small number of real meters (five inflow meters and a single reference
pressure), this example illustrates mainly the effect of uncertainty in nodal
consumption predictions. The error bounds for these data ranged from 30-
100%. The potential inaccuracy of the state estimates calculated using such
data was found to be up to 2.0 m for head variables and 15.0 L/s for flow
variables. This means that for many pipes not only the value but also the
direction of flow is uncertain. It should be noted, however, that these resuits
will clearly improve when extra meters are added. Conversely, if the vari-
ations of nodal consumptions are assumed to be wider, the uncertainty of
the system state will also increase.

Although the Monte Carlo method is effective in providing realistic state
error vectors, its computational complexity tends to be a major drawback.
Even for a medium-sized system, as discussed in the paper, the number of
feasible measurement vectors is enormous, thus rendering this approach im-
practical for routine use. In view of these limitations, two alternative meth-
ods have been developed. In both of these, an accurate linearization of the
system model is used to reduce the mathematical complexity. The first uses
the linearized network equations as constraints in a mathematical optimi-
zation problem and the second uses them to construct a sensitivity matrix.

UNCERTAINTY QUANTIFICATION METHODS

The first problem of quantification is expressing the uncertainty in the
measurement data and in the state variables. The accuracy of each variable
or measurement value should be assessed independently, since a particular
meter configuration will mean that some variables can be estimated accu-
rately and others poorly. So it is not possible to describe how accurate a
meter configuration is by just one value. Also, certain measurment values
are more reliable than others; for instance, telemetry data is generally more
accurate than are nodal consumption estimates. The method chosen for rep-
resenting the uncertainty is to define for each measurement value an error
bound and calculate the corresponding error bounds for each state variable.
To explain the use of these error bounds: if a particular state variable is
estimated to have a value (x); and an error bound (e); then its true value is
no more than (x); + (e); and no less than (x); — (e);. This approach provides
a degree of flexibility while sufficiently defining the confidence limits re-
quired by control applications (Sterling and Bargiela 1984b).

The deterministic network model, represented by Eq. 1, must be altered
to account for the uncertainty of the measurements. In the deterministic sit-
uation the measurement vector, z, is assumed to be single valued. In the
nondeterministic model, it is assumed to have a whole range of values from
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within the region bounded by z, + z, and z, — z,, where z, is a deterministic
measurement vector and z, and z, are the vectors of upper and lower error
bounds for the measurements. Mathematically, this can be expressed as the
region Z, where

Z={zzg~-2,s2<125+ 2}
In this format the network model, Eq. 1, becomes
Zo — = 8(X + AX) S 2ot Z, o 4)

where Ax = a state displacement vector which reflects the changes in sup-
plies and consumptions and relates to the state error bounds in the following
way:

—e<Ax=<e

To define these error bounds for the state vector, each component of Ax
must be maximized and minimized over the whole region of feasible oper-
ating states. For the ith state variable, the error bound can be calculated as
follows:

(€); = max {jmax [(Ax)]|, [min [(Ax))|} ............ F )

where max [(Ax);] and min [(Ax),] = the maximum positive and negative
changes of the ith variable calculated over the set of all feasible measure-
ments and pseudomeasurements, Z.

The input data required by a confidence limit analysis algorithm consists
of the same topological and measurement data as used by the deterministic
state estimator plus additional data on measurement error bounds z, and z,.
The meters in the telemetry system will have a specified accuracy, within a
certain operating range; this may take the form of a percentage error or an
absolute error. The value of this error is directly derived from the manu-
facturer’s specifications provided with the meter. In the case of pseudo-
measurements, the error bounds are calculated from a knowledge of past
operating states of the network and from the factors which determined the
value of a particular consumption estimate such as the population distribu-
tion, the type of industrial consumption, etc.

Optimization

In general, the values |min [(Ax)]| and |max [(Ax);]] are different due to
the nonlinearity of network equations. If m = the number of elements in the
measurement vector z; and n = the number of state variables, then the prob-
lem described by Eqs. 4 and 5 represents 2n maximizations and minimiza-
tions all subject to 2 m nonlinear constraints. Clearly, this is a relatively
complex computational task. However, if the model (Eq. 1) is linearized,
then |min [(Ax),] and |max [(Ax),]| are equal and the problem simplifies to

(e); = max [(Ax),] [ U . (6)
subject to
ZSJAX S oz 7)

Eqs. 6 and 7 can be converted to the standard linear programming form with
2 m inequalities and solved using one of the readily available sparse imple-
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mentations of the Simplex algorithm (Reid 1975). However, this approach
has not been adopted here since it means maintaining an inverse of an un-
necessarily large basis matrix, thus sacrificing computational efficiency. In-
stead, an algorithm proposed by Roberts and Ben-Israel (1970), which cap-
italizes on the special structure of Eq. 7, has been employed. The set of
inequalities, Eq. 7, is subdivided in the following way:

=2 = S AX S 9)

where J' = [JIU7]; 28 = {227|227); z] = [2/"|2)"}; J, is a nonsingular matrix
of dimension n X n formed by » linearly independent rows of J; and J, is
a rectangular matrix formed by remaining m — n rows of J. The solution to
Egs. 6 and 7 is then obtained by solving a finite number of auxiliary prob-
lems of the form

(e); = max [(Ax);] i=1,2,...,n
from Eq. 6, subject to

-z = J,Ax =z,

from Eq. 8, and

where r = a row vector taken from the J, matrix.

In the first auxiliary problem, some of the original constraints are ignored.
Therefore the optimal solution to this restricted problem needs to be checked
as to whether it satisfies the remaining constraints (whether it is feasible).
If all the constraints are satisfied, then the optimal solution of Egs. 6, 8 and
10 is also an optimal solution of Egs. 6 and 7 (Roberts and Ben-Israel 1970).
If some of the constraints are violated, then another auxiliary problem is
formulated by deleting one of the nonbinding constraints in J, of the previous
auxiliary problem and including one of the violated constraints. This process
is continued until it converges to the optimal solution.

By comparing the results obtained using the optimization method with the
results obtained by Monte Carlo simulations (Tables 4 and 5), it can be seen
that the linearization of the mathematical model of the system does not sig-
nificantly affect the values of calculated error bounds. Consequently, the
method appears to be an acceptable substitute for the full Monte Carlo sim-
ulation, especially if the computational performance is also taken into ac-
count. The optimization method produced results in approximately 5 min
whereas the Monte Carlo simulation requires many hours on a VAX-11/
785 minicomputer under the VMS operating system.

Although the optimization method performs satisfactorily in off-line meter
placement studies, it is felt that it is not efficient enough to be used in real
time for online decision support. The next section presents a more efficient
algorithm which is also based on the linearized network model but makes
better use of the specific structure of the problem.

Sensitivity Matrix ' ‘
In the section on State Estimation, the Jacobian matrix was introduced.
At that time it was used to calculate the correction vector at each iteration
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of the state estimation process through Eq. 2. Alternatively, Eq. 2 can be
viewed as an equation relating the sensitivity of the measurement vector to
changes in the state vector. In this way, the Jacobian becomes a sensitivity
matrix, forming the basis of the sensitivity matrix approach to confidence
limit analysis.

Let Az represent the difference z — g(x"). If x* in Eq. 2 is replaced by
the true state vector for the system, Az will then represent the difference
between the measured vector and the true values of the measured variables.
In this way, measurement uncertainty can be introduced into the system model.

Of course, the true state of the system is not known. The best estimate
available is obtained by assuming the measurement vector to be true and
using a deterministic state estimator. For the rest of the paper, J represents
the Jacobian matrix calculated from this state estimate. The symbol Az will
represent the discrepancy between the measurement vector and the true value
of measured variables and Ax will represent the discrepancy between the
calculated state vector and the true state of the system. With these symbols
Eq. 2 becomes

It is reasonble to assume that Az is bounded by the measurement error vec-
tors z, and z,. The aim of confidence limit analysis is to find a state error
vector € which bounds Ax in the same way. Eq. 11 can be used to do this,
but first it must be inverted, to give Ax in terms of Az.

Since the total number of measuréments and pseudomeasurements is greater
than the number of state variables, the J matrix is not square. For this reason
J has no proper inverse and a pseudoinverse has to be used. The inverted
form of Eq. 11 is

Ax =N\ Az, e (12)

Where J7 is the transpose of J and (JJ)™' is the inverse of (J'J). Provided
that the system is observable (Bargiela 1985), (J'J)~' exists and Eq. 12 is
well defined. The matrix (J'J)™'J" can now be used as a sensitivity matrix,
relating changes in the state vector to changes in the measurement vector.
For one state variable (x);, calculating its error bound is just a matter of
maximizing a, - Az, where a, is the ith row of the sensitivity matrix, (J'J)~'J".
The maximization is done with respect to the condition that Az is bounded
by the measurement error vectors z; and z,. That is

(&) = A b o (13)
where
b); = (2); if (a);>0; (b); = (z); otherwise .............. (14)

In this way, the state error vector e can be calculated by repeating the max-
imization of Eq. 13 for each state variable.

The maximization equation (Eq. 13) can be refined to take account of
other system constraints. Perhaps the most important of these is the balance
constraint, which specifies that the total amount of water entering the net-
work at any one time is equal to that leaving it. But the procedure presented
here represents the core of the sensitivity matrix method. First a state esti-
mate is produced on the assumption that the measurement vector is correct,
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Then the possible error of the measurement set is considered and it is used,
together with the sensitivity matrix, to predict the possible error in the state
vector.

This approach requires significantly fewer mathematical operations re-
quired to calculate confidence limits than other methods. The nature of water
network equations means that the matrix J is sparse. This means that its
proportion of nonzero elements is low. This leads to further savings in the
amount of computation required. The use of sparsity exploiting methods in
matrix factorization (Duff 1980) also increases numerical stability, reducing
the risk of errors building up during the calculations.

Computational results can again be compared to the results obtained with

Monte Carlo simulation (Table 3). The linearization of the network model

does not significantly affect the values of calculated error bounds. Further-
more, the results are almost identical to the ones produced by the optimi-
zation method and the minor differences are explained by the round-off in
numerical processing. To produce results for the network of Fig. 6, the sen-
sitivity method required 10 s of CPU time on a VAX~11/785 minicomputer.

PraAcTICAL ASPECTS

To realize the potential of the confidence limit analysis, the algorithms
described in this paper have been implemented as a graphical interactive
software tool called TCLAS (Telemetry Confidence Limit Analysis Soft-
ware). Although the full description of the software exceeds the scope of
this paper, it will be useful to enlist here its main application areas. These
can be grouped in the following categories:

Optimal Telemetry Design

This function of TCLAS software is concerned with the optimal position-
ing of telemetry outstations and the selection of required accuracies of pres-
sure and flow meters in the water network. The software helps to ensure
that any investment in telemetry hardware will produce the best returns in
terms of accuracy of system monitoring. The minimization of the number
of meters employed to achieve a given monitoring accuracy results in savings
in the following: the cost of extra meters, the cost of their installation, the
cost of associated telemetry, and the maintenance costs.

Leakage Detection

The confidence limit analysis of flows and pressures in the network gives
an indication of the feasibility of detecting leakage with a given level of
instrumentation. Since the TCLAS quantifies the uncertainty about the flows
in all pipes in the network as a function of the accuracy of telemetering, it
can be conveniently used for evaluating an upper limit on the volume of a
potential leakage in any given area of the network as a sum of uncertainties
of supplies into this area. By comparing the cost of potential water losses
with the cost of telemetering, the user can decide on an appropriate balance
of these two concerns.

Operator Training and Decision Support
This function concerns the online execution of TCLAS software where the
system operator is presented, in real time, with envelopes of feasible flows
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and pressures rather than with their “average” numerical values. Conse-
quently, the TCLAS approach overcomes the shortcomings of deterministic
simulations which are often mistrusted by system operators, since the “av-
erage” flows or pressures rarely, if ever, agree with the actual meter read-
ings. By providing better reference values, in form of confidence limit en-
velopes, TCLAS promotes better understanding of the water system’s behavior.
This in turn translates into cost savings stemming from the avoidance of,
for example, unstable operation of pressure reducing valves producing pres-
sure surges and consequent pipe bursts, prevention of undesirable low or
high pressure profiles, etc.

CONCLUSIONS

This paper examines the problem of telemetry-related uncertainty in water
systems, its causes, and its consequences.

Present day deterministic state estimation techniques are very efficient,
having small computational requirements and producing results of an ac-
ceptable level of accuracy. But no state estimator can give accurate results
from inaccurate data. Due to the cost of metering, the water industry is and
will be, in the foreseeable future, making use of relatively inaccurate pseu-
domeasurements. For this reason, the computationally accurate results of state
estimators can be very inaccurate when compared to the actual system state.
Monte Carlo simulation has shown that this uncertainty can have a very
significant influence on the reliability of the state estimates derived from the
measurement data. The degree of confidence that can be put in these results
must be calculated and presented with the state estimates themselves. Only
then can the computation results be used in operational control.

There are many factors involved in the interdependence between mea-
surement accuracy and state estimate accuracy. These include: the type, the
number, and the accuracy of meters used in the system; the placement of
those meters; the network’s topology; and the operational state of the dis-
tribution system. These complex and interacting factors mean that any con-
fidence limit algorithm must tackle the problem from a global viewpoint,
considering all of the measurements simultaneously. This is the way the
three confidence limit analysis algorithms presented in this paper have been
constructed.

The Monte Carlo simulation technique generates a set of feasible state
estimates and from these calculates upper and lower error bounds for each
state variable. To guarantee the validity of the Monte Carlo results, a mas-
sive number of state estimates must be used. For this reason, the Monte
Carlo method is an unrealistic proposition for real-time application. Con-
versely, the results it produces are very reliable mathematically. This is be-
cause any error bound or confidence limit produced by Monte Carlo program
is attainable, i.e., there is a feasible state estimate that will reach this bound.
This mathematical reliability means that this approach provides a yardstick
against which other algorithms can be tested.

The optimization and the sensitivity matrix methods presented in this pa-
per are both based on a linearized system model. However, the results pro-
duced by these methods compare very well with the results of the Monte
Carlo simulations. The computational efficiency of the sensitivity algorithm
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presented in the Sensitivity Matrix section renders it suitable for online de-
cision support applications.
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ArpENDIX ll. NoTATION

The following symbols are used in this paper:

a; = ith row of the Jacobian matrix;

dx = correction vector in state estimation;

e = state error vector;

g(.) = vector function combining all network equations;

J = Jacobian matrix J = (9g(x)/0x);

J, = matrix consisting of first n rows of J;

J, = matrix consisting of remaining rows of J;

n = number of independent state variables;
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m = number of measurements and pseudomeasurements;
r = row vector taken from J,;
X = state vector;
x* = kth estimate in state estimation procedure;
Z = range of feasible measurement vectors;
Z = measurement vector;
Z, = average measurement vector;
z, = lower limit on measurement error;
z, = upper limit on measurement error;
z; = vector consisting of first n elements of z,;
z; = vector consisting of first n elements of z,;
Z; = vector consisting of remaining elements of z;
22 = vector consisting of remaining elements of z,;
z; = element of z, corresponding to vector r;
7z, = element of z, corresponding to row r;
Ax = state discrepancy vector; and
Az = measurement discrepancy vector.
Subscripts
u = upper, with respect to measurement error vector;
! = lower, with respect to measurement error vector; and
i,j = ith or jth elements of a vector.
Superscripts
k = current estimate in iteration;
a = relates to J, matrix;
b = relates to J, matrix;
T = transpose of matrix; and
—1 = inverse of matrix.
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