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Recursive Information Granulation: Aggregation and
Interpretation Issues

Andrzej BargielaMember, IEEEand Witold PedryczFellow, IEEE

Abstract—This paper contributes to the conceptual and algo- we need information granules of different sizes (obviously, this
rithmic framework of information granulation. We revisitthe role  term requires a formal definition). It goes without saying that
of information granules that are relevant to several main classes information granules areonceptuakonstructs not necessarily
of technical pursuits involving temporal and spatial granulation. directly implied by th ds of the phvsical Id. In thi
A detailed algorithm of information granulation, regarded as an . irectly |mp Ied Dy the needs o _e physica WOI‘. . .n IS way,
optimization problem reconciling two conflicting design criteria, ~ information granules feature a high level of flexibility. On the
namely, a specificity of information granules and their experi- other hand, they have to be anchored in the world of experi-
mental relevance (coverage of numeric data), is provided in the mental data to reflect in some way the reality (i.e., reflect the
paper. The resulting information granules are formalized in the physical world). To put it another way, the design of information

language of set theory (interval analysis). The uniform treatment - . .
of data points and data intervals (sets) allows for a recursive granules needs to take the perception and experimental evidence

application of the algorithm. We assess the quality of information into consideration. Adopting this point of view, this paper casts

granules through the application of fuzzy c-means (FCM) clus- the problem of information granulation in a well-defined algo-
tering algorithm. Numerical studies deal with two-dimensional rithmic setting. We propose a detailed algorithmic path showing
(2-D) synthetic data and experimental traffic data. how information granules can be constructed on the basis of
Index Terms—Complex systems, data mining-oriented time-se- the existing experimental evidence. It is also revealed how the
ries analysis, fuzzy sets, granular clustering, information granules  derived information granules can be combined even further via

and granulation, interval analysis, perception, time-series, traffic fuzzy clustering.

data. In this paper, we are concerned with information granules and
information granulation carried out in the setting of set theory

I. INTRODUCTORY COMMENTS and interval analysis. The rationale behind a selection of this

NFORMATION granulation and information granules pla)jormal framework is twofold. First, interval analysis has been

a crucial role in many areas of knowledge representatigﬁpqnd as one of the comerstones of granular comquing. As
and problem solving. Briefly speaking, we may claim that thosoé"gm"",tIng from set theory, the conceptual aspgcts .Of interval
information granules permeate most cognitive activities of ha.”a'YSt'S ar? Wel” dleVeLOF’eg- Secondt, thil ?Igorltlhmlct!ayer OL
mans and help organize knowledge about the external world 5‘}1 (interval) calculus has been mastered for a long time an

being more precise build its perception) for the purposes of de gs resulted in a vast number of algorithms [11], [21], [22].

sion-making, control, system description, prediction, etc. Zad erestingly enough, t_he findings reported in this paper could
[31]-[34] promoted a notion of information granulation in th e translated and applied to other frameworks of granular com-
eB[uting, such as fuzzy sets (the conversion of the results derived

f k of f ts. Other f land I loit
Tamework of 1uzzy sets er forma and cormortly exprol gere hinges on the idea of representing fuzzy sets through their

environments of information granulation deal with rough se . . e . .
[23], probability, and set theory (interval analysis) [1], [9], [11],O"CUtS [15], [27], [36]; Fhat is, splitting the problemiinto a family
§ set-based granulation tasks).

18], [21], [23]. In a nutshell, information granules are treated & ) ; . L .
[18], [21], [23] g This paper is organized as follows. First, in Section I, we con-

collections of entities (e.g., numeric readings) that are collected rat lected i which inf i lati d
together because of their similarity, functional closeness, or apyrate on selected areas in which information granuiation an

other criterion that captures a feature of indistinguishability. I grrtngllt|3ntgralr1ulels r;lay_tarl] crl:cmal_ rfole. I\L_ext, n Se?:nt(_)n ”.I’
formation granules give rise to hierarchies of cognitive entities, etailed two-level algorithm for information granulation IS

Depending upon the level of details in which one is intereste Iscussed along with a characterization of information gran-
ules in terms of their size (cardinality), specificity (width of

hyperbox projections), and an integrative measure that we call

' Man_uscrlpt recel\_/ed Oc_tober 29, 2001. This Wo_rk was supported by th_e Efnformation density.” Summarization of information granules
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Associate Editor G. Skarmeta. : , mented pattern space. This issue is discussed in Section IV. A
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[I. DATA GRANULATION: EXAMPLES, DEFINITIONS, AND level. Obviously, this task is more tangible and manageable from
ALGORITHMIC ISSUES the computational and interpretation standpoint. Each subnet-

] ) _work is an information granule that is afterwards treated as a
There are a number of representative domains where infeinceptual and algorithmic entity. For instance, when looking

mation granules can emerge as a useful vehicle to represefig 4 fiow of traffic in a complex network, we partition the
given problem and make problem solving more efficient [20hetwork into modules (call them telecommunications granules)
[26], [29]. The following three areas are among the most promiyg study all incoming and outgoing traffic from this perspec-
nent applications of information granulation. tive, refer to Fig. 1. The concept of hierarchy and information
1) Granulation of Time-SeriesTime-series are commonly granlation is inherently associated with geographic informa-
encountered in numerous practical problems [4]. There hayg, systems (GIS) where we anticipate various levels of detail

been various approaches to the description of time-series apgh control the process of concentrating on specific aspects by
their classification. They are carried out in the time domain aré%tablishing proper levels of information granularity.

frequency domain. Prior to any detailed processing, time-series
are compressed in order to retain the most essential informa- ll. | NFORMATION GRANULES: DESIGN AND
tion and suppress details that are deemed redundant from the CHARACTERIZATION

standpoint of further classification and processing. The essence ) ] o ]
of granulation of time-series is to “discover” dominant com- In this section, we discuss the algorithmic layer of informa-

ponents of the series. We may perceive these componentd/33 granulation by studying a way of constructing informa--
playing a role of basic conceptual blocks easily understood B9n granules. As we have confined ourselves to a set-theoretic
humans and capturing the semantics of the underlying phend@imalism of information granulation, we show how to con-
enon. For instance, information granules may be formed as Sgﬁyct intervals or their multidimensional versions (that is hyper-
ments of consecutive samples of the signal. Then, each segniheS)- In the discussed framework, granulation applies to nu-
may be labeled according to the configuration of the Samp|ég§rlc data. Thg granular.propertles of sets are stralghtforward:
e.g., rapidly increasing signal, steady signal, slowly decreasi% Igrggr the size of the interval, the Iower. its granularity. Thg
signal, etc. [8]. Alternatively, as we propose in this paper, or‘f@rdm‘f"“ty of a set_, card(.), serves as a sgltable measure of in-
may consider granulating the time-series value with its gradieflc?{mat'o,n grgnulanty. Ingeneral, th? following h_OIdS: the bigger
(and/or higher order derivatives) in individual time instanceg.1e cardinality of the set, the lower its granularity.

Note that standqrd sam.pling tephniques are very specific eX"’K‘."Building Set-Based Information Granules

ples of granulation of time-series (as we attempt to capture a

segment of a signal falling under a given sampling window by In the proposed approach, information granules are designed
a single numeric value) in two stages (phases). First, in the entire data set under anal-

2) Granulation of Digital Images:Digital images are two- ysis, we define the size of a segment (window of granulation),

dimensional (2-D) relations. As far as understanding and prdP€Cify the elements (data points) within each segment and, in

cessing of images is concerned, a crux there is to identify SOﬁ%quel_, use these elements to construct a detailed form of the in-

higher level entities rather than being buried in a minute andfrmation granule. More formally, the granulation process can

ysis completed at the level of individual pixels. Such tangibRe delineated as follows:

and semantically sound entities are information granules. They X = A (1)

may arise at the level of basic homogeneous regions (in terms Q

of brightness, color, and texture) one can identify in an imagghere

These entities are inherently hierarchical; at a higher level wex original data set;

may think of individual objects in the image (that are composed()  set of disjoined time period®;, representing windows

of the granules arising at the lower level with more specific and of observation:

less abstract information granules). At the technical end, the4  set of information granules.

simplest and least abstract information granules are formed byrhe first phase is straightforward: by defining the size of the

definingn x m blocks of pixels [19], [24], [25]. At the higher data segmerityy = card ),k =1, 2, ..., G) we embrace a

level, we are concerned with various clustering techniques tlgallection of data points that is of interest and need to be consid-

help us construct abstractions out of the low-end (more detailegied together when constructing a detailed model of the infor-

information granules such as the already mentioned blocksrpétion granule. It should be emphasized that whijedefines

pixels. a maximum cardinality of initial granules it does not prevent
3) Granulation of Spatial StructuresAn array of current formation of several smaller granules within any given window

modeling pursuits occurs in the realm of distributed systero$ observation (as will be explained later). Windows of obser-

such as networks. Obvious examples of these architectures\a&gon can be formed in many different ways (see Fig. 2). The

electric networks, water networks, or telecommunication neghoice depends on the problem and reflects a way in which the

works. In spite of their evident diversity, the networks share sesemantics of the problem is addressed. For instance, the window

eral profound commonalties. In particular, a hierarchical tygmn include a fixed number of samples. In some other cases, as

of modeling is omnipresent there. Instead of analyzing the eshown in Fig. 2(b), the window can exhibit a different level of

tire network, we split it into subnetworks (modules) that argranularity by being formed using monotonic (increasing or de-

loosely connected and proceed with a detailed analysis at thisasing) parts of the signal, which may be of varying length.
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subnetwork

Q X ..

Fig. 1. Concept of network granulation; we focus on structural granules by
studying a flow of traffic at the level of a selected part of the network.

Note that the formation of the window of observation is implied
by the characteristics of the problem at hand.

In the sequel, the process of constructing (and subsequent o
recursive refinement) of information granules comprises two
phases:

1) derivation of information granule(s) from the original nu- ®)
meric data contained in the window of observation; Fig. 2. Examples of segments (windows of observatidp) (a) of the same
2) recursive processing of the mixture of granular and ngranularity and (b) variable granularity induced by the monotonicity of the
meric data. signal.
In the detailed construct, we start with a collection (block) o
data{z;: j € Q}, as shown in Fig. 3(a). The phase-1 granu
lation results in a mixture of granules and data points that re =
resent local maxima of the “information density” function (de- (@) LR
fined later in this section). The result of this granulation is vi- — "¢ 0=@=@—@—  ¢=m@u@ 99— >

sualized in Fig. 3(b). Subsequent recursive granulation of th (b)

output from phase-1 produces level-2, level-3, etc., granules [ =00 ¢=mmmmumnuul=9 — >
shown in Fig. 3(c)]. For simplicity of discussion, we consider ©

here just scalar numeric data but we can easily generalize this

. . . 3. lllustration of the concept of recursive granulation: (a) original data,
cons.tr.uct to.a vector case by studymg each coordinate of I@ phase-1 granulated data, and (c) (phase-2, phase-3, etc.) granulated data.
multidimensional data separately.

In this paper, we adopt a set theoretic framework for the dgneres — [4, 8] denotes the interval we are about to construct
velopment of the granulation algorithm, thus focusing on “K‘ndX[a ) stands for its characteristic function, that is
“bottom-up” approach to understanding the nature of data, as '
advocated in [5], [8], and [12]. In this context, one of the con-
tributions of this paper is the development of the optimization-
based granulation algorithm. The proposed algorithm does rJI%t . . . . I
require specification of the number or size of information gran- e specificity of the interval can be directly associated with its
ules and it focuses fully on the character of the data itself. width

Building interval-valued granules arises as a compromise be- width(I) = width([a, b]) = b — a. (4)
tween two evidently conflicting requirements.

Q

A width(ab) — Sb

1, ifzisin[a, b]

X[a,b](x) = { (3)

0, otherwise.

More precisely, the larger the width of the interval, the lower its
Osrpeciﬁcity. While this definition is straightforward, we will be
using its slightly enhanced version expressed as

1) The interval should “embrace” as many elements
{z;: j € Q} as possible (to be a sound representati
of the window of observation).

2) Theinterval should be highly specific. This translates into P(width([a, b])) (5)
the requirement of a minimal length of this interval (set).

As far as the first requirement is concerned, a cardinality ®fhere ¢ is monotonically increasing function of the original

the set covering elements 6, is a suitable criterion, thatis Wwidth and ¢(0) = 1 (as will become obvious soon, this
boundary condition is introduced for the sake of uniformity of

processing of data points and data intervals). For instance, a
mapping of interest can assume the form
Carc(I) = Z X[a,b](xk) (2)
riex $(u) = exp (u). (6)
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width(T)

Bearing in mind a conflicting nature of the requirements 1) and
B
C
0 50 60 70

2) that is captured in the form 0e
card/) — max  ¢(width([a, b)) — min  (7) y
it is legitimate to take a ratio of these equations :i A
card]) 02
=——— 8
7= p(width(1)) ®

and determine the intervako that it maximizes (8). In this way, oz s “c;r"d(i";
we cope simultaneously with the two contributing optimization
problems defined in (7). We refer to the optimization expresseg) 4. contour plot of the information density function (8)) = const.
by (8) as maximization of “information density” of granulesTransition from granule A to B represents a net decrease of information density
This is to distinguish it from the concept of “data density” thatnd is therefore avoided. Transition from A to C represents formation of a
. . . L . granule with higher information density.
is typically represented as a ratio of cardinality of a given sét
over the volume of the pattern space containing this set. Conse-
guently “data density” is not defined for a single numeric datayperboxes are as similar to hypercubes as possible. The above
(zero volume in pattern space). function can be expressed in a more compact form
The choice of functions(«) depends on the preference for
large or small information granules. Fig. 4 shows contour plots
of (8) obtained withp(u) as defined by (6). It can be seen that $(u) = exp (2 s max(u;) — min(uj)> (10)
the decrease of the gradient of the contours with the increase ! J
of the cardinality of the granules implies inherent preferen%erei’ j =1,... n ltis clear that (10) is not affected by

for smaller granules. This is an advantageous feature as itgiY S dimensionality of the pattern space. The maximization of

us a possibility of avoiding undue influence of inherently Iocq e width of the hyperbox (granule), over all dimensions of the
optimization on the more global view of data that is obtaineEle '

throuah recursiv lication of the qranulation alaorithm. A attern space, results in a scalar value that is of the same order
altg%%tivgccuh(s)ic(ee ;Ep Ciclj 0 reesgltz irl: Sor?st:ngtlo a diént gardless of the space dimension. Furthermore, the function
bu) =1+u > b 9 satisfies the original boundary conditigi{0) = 1, since for
contours of (8) and is thus less appropriate in the context of Q% boint-si . A
. ) 9 . e point-size datamax;(u;) = min; (u;) =0, =1, ..., n.
algorithm. A functiong(u) = (1 + u)* results in contour plots

. . , ~ While, in general, the pattern spa&ecan be any subset of
that'a're broadly S|m.|Iar o thosg obtained witfu) = exp(u), R", we restrict the operation of the optimization task (8) to a
but it is less convenient numerically.

. . . . unjt hypercubg0, 1]™. Such a restriction does not imply an
The above considerations generalize easily on the cas # yb 40, 1] ply any

o ) N ) . f lity of h while affordi I -
multidimensional data. The maximization of information dentgti?)r?a?ggrféﬁtgvc\)/itﬁurreggf(;oticmz\:;Jpli;g@Elu)?rdlng clear compu

sity, implied by (8), can k.)e pe_rformed for multldlmensm_nal_hy- The optimization-based granulation of data is carried out as
perboxes. We consider in this case a ratio of the cardinality gf . . )
' Ce 2 one-pass simulation process:
the input data set contained in such hyperboxes to a function i _ _
of volume of the hyperboxes. However, such a direct approachl) normalize data to a unit hypercube; o
creates dependence of the information density measure on th&) [Nitialize data structures representing cardinality and the
dimensionality of the pattern space. Given that in the interest ~ Width of |nd|V|d'uaI data items (1 and O, respectively, for
of the uniformity of processing of data points and intervals we _ the point-data); _ .
deliberately increase the dimensionality of the pattern space (as) calculate and store the value of “information density
explained in detail in Section IV) it is advantageous to consider  [@S implied by (8)] of hypothetical granules formed by

a dimensionality-invariant version of mappiggu). This can any two data items in the input data set. This forms an
be given as follows: upper-diagonal matrixo of size N x N, whereN is the

cardinality of the input data set.
4) find a maximum entry inD;
5) if the maximum corresponds to an off-diagonal element
> (9) (je{1727"'7N}7Z'E{j?"'7N}):
* merge the two information items (identified by the

¢d(u) = exp (mfmx(ui)) * eXp <1n51x(ui) - mjin(uj)

whereu = [ug us -+ up], u; = width([a;, b;]), andi, j = ith row and;th column) into a single information
1, 2, ..., nis an index of the dimension of the pattern space. granule, which has width defined by the maximum
The first exponent function in (9) ensures that the specificity and minimum values of coordinates in each dimen-
of information granules is maximized through the reduction of sion from the two component granules; i.e.:

the maximum width of the hypercube along all dimensions in o find themin of each of the coordinates of the

the pattern space. The second exponent in (9) ensures that the 1th andjth granule;
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o find themax of each of the coordinates of thewhich is O(N?)), they are particularly suitable for processing

ith andjth granule; multidimensional data. Another common characteristics of the

o modify the ith granule so that its size istwo algorithms is that they maintain a localized view of data. As
defined bymin- and max-values identified the granulation proceeds, the identified clusters do not exercise

above; o _ further influence on data points that remain after their removal.

* update the cardinality of the resulting granule 10 o yever, there is a significant difference between the two al-
the sum of the cardinality counts of the Comloonerl)torithms. In our algorithm we do not make any assumptions
granules; . . . about the maximum size of granules. Granules are allowed to

' ump;?otﬁ ?;ttrn;or\:: %n;jhgo;ue:nv?yi?r:nvgz tirr:?ol:]r;c:t}ongrow as long as their local data density keeps increasing. Fur-
granule and remove thith row and column from thermore, we do not make any arbltrary decision about the sep-
D ie.: i aration of_ cluster cente.rs. The formation of closely separgted
o copy rows 1 toj — 1 from matrix D to matrix granules is largely avoided by the very nature of maximiza-

DI tion of information density, which tends to increase the size
o copy rowsj + 1 to sizeé D) from matrix D as pf granule if it means addl_ng suﬁ|C|entIy large numb_er of data
rowsj to siz€ D) — 1 in matrix D1; items (another granule) W'lthout undue increase of its volume.
o copy columns 1 tg — 1 from matrix D1 to If, on the other hand, the increase in volume would imply the
matrix D2: reduction of information density, the granule does not expand

o copy columnsj + 1 to siz¢ D) from matrix and remains well separated from the neighboring granules. An-
D1 as columng to sizé D) — 1 in matrix D2; other distinguishing feature of our algorithm is that it allows

o overwrite matrixD with matrix D2; processing both point-size and hyperbox data. This is an impor-

* return to d). tant characteristic that allows hierarchical granulation of data.

6) If the maximum corresponds to a diagonal eleni{ért It should be noted that hierarchical granulation enables over-
J): coming the limitations of the “local view” of data while sup-

+ copy the granule to an output list and remove thgorting the application of the algorithm to a partitioned input
corresponding row and column from matrix i.e.: data set.

o copyrows 1tgj — 1 from matrixD tomatrix |t js also instructive to point out an important difference be-

D1, ) . . tween the hierarchical clustering and the hierarchical granula-

© Copyrowsy + Zto siz¢ D) from matrixD as  tion proposed here. In hierarchical clustering, the similarity or
rows tol sizg 1); 1 ml TatnxDi,. D1t Proximity measure is evaluated for all data in the unpartitioned
° (r:r?apti/if%;mns 9 — 1 rom matrix 0 pattern space. This renders hierarchical clustering computation-
o : . ally expensive at the early clustering stages. By contrast, hierar-

o copy columnsj + 1 to siz€ D) from matrix ; X "

chical granulation can operate on the partitioned pattern space

D1 as columng to siz¢ D) —1 in matrix D2; h hievi anificant tational aains b fth
o overwrite matrixD with matrix D2: (thus achieving significant computational gains because of the

« ifthe size of matrixD is greater than 1, return to d) qguadratic computational complexity of the algorithm with re-
otherwise terminate. ' "spect to the cardinality of the data set) and the subsequent ap-

Computational complexity of this granulation algorithm iplication pfthe algorithmto the pfartially granullated patterns en-
O(N?) owing to the computations of matri in step c). How- ables arriving at the globally optimal granulation.
ever, unlike the clustering techniques (such as FCM), the granuThe granulation algorithm introduced here is developed
lation process has an inherently local character and can be ea@ginst a background of some recent developments in this area.
applied to a partitioned input data thus circumventing the higf Particular, it complements the fuzzy granulation approaches
computational cost associated with large data sets. It is woRfpPosed in [2], [12], and [30]. We demonstrate that crisp
pointing out that the size of matri is being reduced by one granulation followed by fuzzy clustering offers a powerful
row and column in each iteration thus the number of iteratifEamework for deriving data abstractions, but further study will
steps equal®y — 1. be undertaken to investigate the relative merits of generalizing

The above algorithm is somewhat similar to “subtractiv@ur algorithm to its fuzzy variant.
clustering” proposed by Chiu [5] in that the algorithm avoids To illustrate the operation of the granulation algorithm, we
any arbitrary partition of the input space and is driven pureBonsider here a synthetic 2-D time-series, as presented in Fig. 5.
by the existing input data. In contrast to grid-based methods,The granulation algorithm is then applied to data from
areas of input space that do not have data are simply ignoféd. 5(b). Apart from identifying the granules themselves, we
by the two algorithms. Both our algorithm and “subtractivenonitor the value of information density index throughout
clustering” avoid combinatorial explosion of relationshipshe granulation process. Of course, the information density
with the increasing dimension of the input space. Since tloé granules identified toward the end of the process is lower
algorithms maintain linear computational complexity witlthen the information density of the early granules. This is
respect to the input space dimension (not to be confused withcause the removal of “high information density” granules
the complexity with respect to the cardinality of the data sétaves effective voids in the pattern space. We can utilize this
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Fig. 5. Synthetic 2-D time-series: (a) time plot and (b) state plot.

indicator in two ways. We can either terminate the granulation IV. ASSESSMENT ANDINTERPRETATION OFINFORMATION
process when the information density of granules reaches a GRANULES THROUGH FUzzY CLUSTERING
prespecified threshold level (which effectively discards some
data), or we can perform a “higher level” granulation on the The recursive application of the granulation algorithm dis-
identified granules (which merges granules from the previoggssed in the previous section, condensed the data quite signif-
level). Here, we adopt the latter approach. icantly. What is of fundamental interest, however, is whether
The operation of the granulation algorithm, over threlis “condensing” sharpens the view of the essential character-
hierarchical levels of granulation, is illustrated in Fig. 6. Thitics of data. We assess here the quality of granulation by iden-
“level-1” granulation compresses the original set of 230 dattying a limited number of representatives of both the original
points into 27 granules. These granules are presented as iHPPeric _data and the constructec_j mfo_rmatlon granules. This is
data to “level-2" granulation, which results in nine granule@ccomplished by clustering and identifying prototypes (repre-

“Level-3" granulation reduces this number further to Si)§'entatives) of the granules [10]. In particular, a fuzzy clustering

granules. It is self-evident that the hierarchy of granules for n%ethod, a well-known FCM algorithm [3], [13], is of interest

: . L T}ﬁre. As a result of this clustering mechanism, the method re-
an abstraction that preserves the essential characteristics of the I . ) ; )
turns a partition matrix. This matrix captures all granules in the

original data (th?t of four relationships |n.the pattern SPACKS M of some generalized architecture of fuzzy sets formed over
Of even greater importance, the granulation has balanced family of the original information granules

relative count of data items in large and small data groupings,\ +e that in contrast to the “standard” clustering method, we

thus helping smaller data groups to be *noticed” in subseque{,ﬂg concerned with a collection of hypercubes—seR'insee
processing (clustering).

s X . Fig. 7). As in any clustering pursuit, our objective is to reveal a
Itis worth noting that the number of granulation levels do€gctyre in a set of these granular data. As a consequence of the
not need to be defined in advance. The hierarchical granulat@,gmmar nature of the data set, we anticipate that the prototypes
is simply carried out until the number of granules identified gkturned by the FCM are also information granules.
the subsequent granulation levels does not change. Of course, i@wing to the granular nature of the data to be clustered, they
any practical application, the maximum size of granules is frgeed to be represented (encoded) in such a way that their aspect
quently predefined so that the granules map conveniently ofPgranularity can be properly captured by the FCM method. A
some linguistic entities. In this case, the relative weighing of thgirametric method of processing heterogeneous data is a sound
two components in (8) can be adjusted so as to achieve thegelution to this problem. Within this scope, several directions
quired granularity. could be sought (see Fig. 7).
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1) The lower and upper bound of each coordinate (feature) one has to incorporate the lower and upper width. In this

of the information granule (we refer to it asaund en- case, such representation implies a higher dimensionality
coding can be represented. Thus, for thr&imensional of the space in which the clustering takes place.
information granule, we end up with 2Zn-dimensional  The topological implications of increasing the dimensionality
space of objectg™ to be clustered of the pattern space in the above two representations can be
appreciated by analyzing a single dimension of a granule. We
XV = [T M1y Tis Tig o Tpe Tny] consider here three intervalB{, 12, andI® c R!) and a point

€ R!, as shown at the top of Fig. 8.
he bounds-encoding method generates pointRinthat
"Have their first coordinatér;_ ) representing the lower bound
of the interval, and the second coordingig ) representing
the upper bound of the interval. It is clear that all point&ih,

X~ =[my 61 -+ my 8 -+ My ). map onto points along the ling_ = z,; in R? and all inter-

vals inR! map onto points in a half-spade; = (z;_, 2} ):

This representation is suitable if we have an interval that, > z; , 2;c R?}. What has been achieved therefore is that
is distributed symmetrically around the center. Otherwisa,heterogeneous mix of intervals and pointRihhas been con-

D
2) Each coordinate can be represented by a center pointlD oﬁ_
the granule and its width (center-width encoding). Agai
this form of representation gives rise to the-dimen-
sional space
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ﬁ Bearing this in mind, we adopt in our subsequent study the

O bounds-encoding method so that we can maintain topological
D interpretability of the mapped points and intervals. It should be
pointed out that, in general, we will concern ourselves with map-
ping from R™ to R?" (or more precisely from [0, T]to [0,
1%m).

Having achieved a homogeneous representation of input data,
the application of standard FCM clustering [3] returns a parti-
tion matrix and a collection of cluster prototypes. These proto-
types are of the same dimensionality as the input data; therefore,
bounds (a) they can be interpreted in the original data space as hyperboxes.
? In particular, the prototypes represent now fuzzy decomposable

a relations in the feature space [27], [34], [35], in addition to rep-
D resenting, through the partition matrix, the fuzzy membership
of data in clusters. The combination of the two aspects delivers
a more comprehensive insight into the granular nature of infor-
mation being summarized by the prototypes.

To illustrate the clustering of information granules, we con-
tinue with the example given in the previous section. The FCM
algorithm is deployed first on the original data (to provide a base
reference) and then on the granulated data. The number of clus-
(b) ters is kept constarft: = 4), so that the issue of size and posi-

. . ) ) tioning of prototypes is brought into sharper focus. The results
Fig. 7. Information granules to be clustered and their representation. (a) Bound

representation. (b) Center-widgm-6) representation. are shown in Fig. 9 and Table_ l. ) )
As expected, the granular input data gives rise to granular

I B pP prototypes. The size of the prototypes affords a good appreci-
ation of the spatial dimensions of the original data groupings.

>
3_"l.lllll‘
v

1
0 1 ! R This is in contrast to the standard result [see Fig. 9(a)] where
_______ L the prototypes are point-size and, in themselves, do not convey
Xis s this information. Although the FCM partition matrix contains

2
R information that represents the area of influence of individual

clusters its direct interpretation is quite difficult due to the com-
plex topology of the contour plots of the partition matrix. In this
sense, clustering of granular data affords a better insight into the
nature of data.

Another important observation that can be made from the
above results is that the information granulation helps to over-
come the well-known bias of the FCM algorithm, that of under-
representing smaller groupings of data. Since the granulation re-
Fig.8. Mapping of three intervals and a poinii to R? space using bounds- duces the number of information items in the high data density
and center-width encoding. areas, the relative count of granules in large and smaller group-

ings of data evens out. In other words, granulation substitutes
verted into a homogeneous set of pointRift (to be precise we explicit enumeration (that unduly affects FCM) with an update
are only concerned with the unit interval [0, 1] and a unit boaf the cardinality attribute associated with individual granules
[0, 1] x [0, 1]). An interesting feature of the bounds-encodin@hat is transparent to FCM). It can be seen that the clustering
mapping is that the occurrence of inclusion/overlap of intervaté level-2 and level-3 granulated data [see Fig. 9(c) and (d)]
is easily detected in the mapped imag®if. The symmetrical does not have any problems associating prototypes with the two
reflection of the mapped intervals with respect to the diagonainaller data groupings. This is a significant result that illustrates
linex,_ = z;4 givesrise to a “box” (as illustrated in Fig. 8) forhow data granulation complements fuzzy clustering.
each interval. The boxes for disjoint intervals are disjoint and
the boxes for overlapping intervals overlap as well.

The center-width mapping also achieves a conversion of het- V. GRANULAR TIME SERIES
erogeneous mix of intervals and pointsRi, into a homoge-
neous set of points ilR2. However, the topological property The concept of information granulation opens up a new av-
of interval overlap is more difficult to identify in the mappedenue of signal processing both in terms of signal representa-
image. This is because the character of the two componenttitin and modeling relationships between the granular entities.
mensions is quite different. One dimension represents a valoghis section, we look at two possible approaches to capturing
of data and the other dimension represents a relative variatibe dynamics of time-series and compare it to the granulation
from this value. approach described in the previous sections.

. - : 1 N 0 1
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Fig.9. Clustering of granular data performed using FCM. (a) Reference case of clustering the original 230 data points (the size of prototy pesiuaebetea
for the sake of the clarity). (b) Clustering of level-1 granulated data (27 granules). (c) Clustering of level-2 granulated data (nine graGiussri) of level-3
granulated data (six granules).

TABLE |
COORDINATES OFFCM PROTOTYPES ASILLUSTRATED IN FIG. 9
Case Prototype Prototype coordinates
Reference case — original data P1 0.6869 0.6811 0.6869 0.6811

P2 0.6536 0.6593 0.6536 0.6593
P3 0.2255 0.2033 0.2255 0.2033
P4 0.2324 0.2482 0.2324 0.2482
Level-one granulated data P1 0.1987 0.1873 0.2518 0.2381
P2 0.6772 0.6538 0.7364 0.7226
P3 0.2013 0.1966 0.2548 0.2470
P4 0.6275 0.6328 0.6859 0.6982
Level-two granulated data P1 02124 0.4718 0.2659 0.5214
P2 0.4652 0.1206 0.5042 0.1656
P3 0.6422 0.6086 0.7769 0.7674
P4 0.1293 0.1290 0.2902 0.2501
Level-three granulated data P1 0.1792 0.1267 0.2965 0.2446
P2 0.4829 0.1113 0.5199 0.1572
P3 0.6546 0.5983 0.7924 0.7935
P4 0.2061 0.4821 0.2575 0.5312

A. Time-Domain Granulation Bearing in mind our earlier comments on the bounds-en-

The state-space granulation (and subsequent clustering) ¢RHing of information granules, we can formalize the
scribed in the previous two sections is now compared to the §ne-domain granlflatlg)n as a mapping of the original
rect approach in which the information granules are formed B sletxz = {g ;@ ..., w7} onto a set of intervals
predefined sets of consecutive elements of the time-series. This 1/ » {*+ -+, I”'} whereN is a number of elements in the
approach is referred to asne-domain granulationThe sim- time-series and: is thi number of granules.
plest strategy within this approach is to define a “window of ndividual granuleg™ are described as follows:
observation” and to evaluate an appropriate granular represen-
tative within such a segment of time-series. Fig. 10 illustrates 7 (

the principle of this approach. min (z7), max(ﬂ)) (11)

JEQ JEQ
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Fig. 10. Simple time-domain granulation: (a) time-series and (b) information granules formedwth3.
where of information (Shannon theorem, [24], [25]) that demonstrates
) ) itself here through large, low-specificity information granules.
Q= {iz wo(k—1) +1 <i < wok} (12) The FcM prototypes that are build on such granules also have
andk = 1,2, ..., G, w,G < N, w, is a granulation window. low specificity and they occupy most of the pattern space [see

Equations (11) and (12) are easily generalized to multidimeﬁi—g: 11(d)_(f)]_' We conclude, th_erefo_re, that_a simple_t?me-d_o—
sional time-series by applying thein- andmax-operations to 12" granulation should be avoided if there is no additional in-

all coordinates of the original data, in which case we have format|or.1.ava|lable concerning the appropriateness of width of
the specific granulation window.

I* = (min (#]), max(w]), min(a}), A refinement of the simple time-series granulation approach
JE€Q JEQ JEQ has been proposed by Dafsal.[8]. The extended method con-
j . j 13 siders fixed-length subsequences of the series rather than just
?el?z)f(%)’ o }ggi(x”)’ ?el%)f(x") (13) individual data items (see Fig. 12). The subsequences are rep-

resented as data points in the augmented input space that has
dimension defined by the length of the subsequeficgs Sub-

is a dimension of patterns. The set of intendat®w represents sequences that have similar “shape” are represented as nearby
a granulated information from the original time-series. As sucRoints In the augmented space and can be clustered using some

the intervalsl* can be used to extract specific knowledge aboappropriately deﬁ”?d _dis_tance functio_n. However, because the
the system at the higher level of abstraction compared to the grgperty of shape similarity should be independent from the ac-

afforded with the original time-series. In order to check the e}gal values of time-series, the subsequences need to be normal-

fectiveness of knowledge abstraction based on the informati'&ﬁd toa fixeq range (typically [0, 1]) before .they are clustered.
is worth noting that every change of the width of the granula-

granules (13), we apply the time-domain granulation to the syr. ind imolies th aqf lizati £h
thetic data of Fig. 5. To make a fair comparison of our algorith|I|'1On window (w, ) implies t € needlor a renorma Ization of the
with time-domain granulation, we selegt to be 8, 25, and 3 subsequences. The clustering process can be seen as a forma-

8 so0 as to ensure that the granulation returns 27, nine, and 9% of a “vocabulary” (codebook) of information granules that

granules, respectively. However, we start first with granulatig€ Viewed as conceptual entities aimed at capturing the original
numeric signal [28].

windowsw, equal 2, 3, 5, and 6, which imply formation of 115, learly. th h i i ional ti
76, 46, and 38 granules, respectively. Results of the granulatior?_ early, t_e approach generaiizes to multidimensional time-
ies. In this case, the subsequengeare formed by patterns

and subsequent FCM clustering (four clusters) are presente&‘ﬁ’i " _ _ . s
Fig. 11. z* € R", wheren is a dimension of individual patterns. They

One fact that is immediately obvious from these results e theregore felements (:bl)"—gl:nensmnal space, wherﬁd_
that time-domain granulation is very sensitive to the selection@ UM ter 0 p;;e\tteris4c]c)rme _ro;)a@ _Is_ﬁquTnctes n ;eacb -
of w,. If the window of observation is aligned well with theMmension (typicallyo, = 4 for wy = 3). The clusters of subse-

. L . . . ) w1)"
boundaries of significant changes in the time-series, as is fijgences are therefore hyperboxe&fft1)" . Unfortunately, the

case forw, = 2 andw, = 5, the resulting granulation givesexponent.ial.increas_e of the dimensionality of the “shape-space”
a good abstraction of the original data and the FCM clusteriﬁ'{f)‘s‘kes this impractical.

identifies prototypes that represent the data well. However, in .

a more typical case, when the window of observation includ&s Phase-Space Granulation

data that belongs to two different data groupings, the time-do-In this paper, we have adopted an alternative approach to
main granulation generates large, unrepresentative granules tagturing the nature of subsequences of time-series that avoids
adversely affect subsequent FCM clustering. Such performangelue augmentation of the input space. We characterize the
is, in fact, to be expected since the transition of the time-stshape” of subsequences by a range of gradient angles between
ries from one data grouping to another represents a high-fthe first and every other pattern in the subsequence (in Fig. 13).
quency signal that is not matched by the sampling frequentiis results in an interval (hyperbox) description of “shape” that
of the granulation window (as defined by the inverse of this fully compatible with the interval (hyperbox) description of
window’s width). Therefore, the result is an irretrievable losthe time-series values, as defined in (11)—(13). The advantage

It is clear that the mapping & ontoI involves the increase
of dimensionality of the pattern space fr@®® to R>", wheren
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Fig. 13. Phase-space granulation: (a) intervals of time-series values and (b) intervals of gradient angles (granulatian,windogee Fig. 10).
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Fig. 14. Phase-space granulation and FCM clusteringz (a3 6 (38 granules) and (by, = 8 (28 granules).

of this granulation is that subsequent clustering does not imgyanules taV/w, while maintaining the dimensionality of the
any further increase of the input space dimension. input space. Consequently, the computational complexity of the
Since the intervals of time-series values in each granulatisnbsequent FCM is reduced by a fadtog)?. This is in a sharp
window are already contained within the [0, 1] range, onlgontrast to the granulation proposed in [8], where the increase
the intervals of gradient angles need to be normalized fromh the width of the granulation window reduces the number of
[-7/2, m/2] to [0, 1]. input patterns taV-w,, but itincreases the dimensionality of the
We can formalize the phase-space granulation as a mappimgut space by a factao,, thus increasing the computational
of the original data seK = {z!, 2%, ..., "V} onto a set of complexity of FCM also by a factao,.
hyperboxed = {H*', H?, ..., HY} whereN is anumberof  Tests performed on the synthetic time-series data indicate that
elements in the time-series aadis the number of granules. A while the inclusion of the gradient of the time-series goes some
hyperboxH* is formed as a Cartesian product of two intervalsyay toward filtering out unrepresentative granules, the FCM
H* = I* x J* wherel* is an interval of time-series valuesclustering of phase-space granulated data is broadly comparable
and.J* is an interval of gradient angles in tii¢h granulation to the results obtained with simple time-domain granulation.

window Fig. 14 provides an illustration of granulation and FCM clus-
L ) . . tering obtained fow, = 6 andw, = 8. Results illustrated in
I" = <]H€1gi($l): ?elgf(ﬂf]g (14) Fig. 14(a) are an improvement on the results from Fig. 11(d) but
there is very little (if any) improvement discernible in Fig. 14(b)
Jk = <J_7éln]1ilneQ (norm(grad(z?, z'))), compared to Fig. 11(e).
3Ty k

max  (norm(grad(z?, a:l)))> (15)

Gl 5, 1EQy VI. NUMERICAL STUDIES

wheregrad(.) is an angle-valued gradient function ame-m(.) In this section, we apply granular analysis to a time-series
is a normalization function. The granulation windé¥ is de- of traffic queues collected by an urban traffic control (UTC)
fined as in (12) and the generalization of the granulation tosgstem. The data represents traffic on a crossroad in Mansfield
multidimensional time-series is analogous to (13). In this geNottinghamshire, U.K.) during a morning rush hour. The
eral case, the dimension of the input spackigwheren isadi- topology of the selected crossroad is illustrated in Fig. 15.
mension of:*) and the subsequent clustering of hyperbadés The junction is controlled by an adaptive system called the
does not imply any further increase of the dimension of the pafplit-cycle-offset optimization technique (SCOQOMat at-

tern spacé H* € R*"). Itis worth emphasizing that increasingtempts to maximize the traffic throughput of the junction by
the width of the granulation window, reduces the number of adaptively modifying the duration of the red/green signaling
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Fig. 15. Junction with three measured traffic flows (in Mansfield, U.K.).

stages. However, the details of SCOOT heuristics that imple-The original time-series are presented in Fig. 16. They con-
ment the traffic signals optimization are not readily availablgist of 705 discrete measurements for each inductive loop. The
since the system is a commercial product. This is unforteeadings are time-aligned and form a 3-D vector of system states
nate because the development of various high-level traffier 705 time instances. In order to achieve consistent representa-
management tasks such as in-car traffic information, varialilen of data points and intervals, we increase the dimensionality
message signs, and public transport information (all of whidf the pattern space from three to six (as illustrated in Fig. 8).
require predictions of traffic flows over extended time-scale¥Yye apply the granulation and clustering to this six-dimensional
is critically tied to the SCOOT system itself [7], [17]. We shalktate vector and visualize the results by three 2-D projections.
show here that, by performing granular analysis of traffic dath,is worth mentioning that while the granulation and clustering

it is possible to infer operational control rules that can provideperates on data that is normalized to a unit hypercube ({p, 1]

a basis for the development of high-level traffic managemetite results are converted back to the original data values.

tasks while, at the same time, leaving SCOOT fully in charge gjgs 17_19 reveal some interesting properties of the system.

of detailed optimization of traffic signals. First, the plot of the original data and FCM prototypes (see

_ While the full Mansfield SCOOT system involves some 4@, 17) is somewhat surprising in that significant relationships
intersections, for the sake of clarity of presentation, we limfotyeen traffic in various directions appear not to be fully repre-
oursel_ves tqjust one intersection, as_lllustra_ted in Fig. 15. TQ_Ented by the prototypes. This is because the data grouped along
three inductive loops are the measuring devices that count gj$s gxes (“west= 0, “east’= 0, and “south’= 0) exerts undue
crete pulses generated by cars passing over them. The numbgience on the FCM algorithm. The situation changes quite
of pulses generated by a car is proportional to the length of they matically when we consider granulated data (see Figs. 18
car and inversely proportional to its speed. Therefore, a smagl|y 19). In this case, the prototypes cover a larger proportion

vehicle moving slowly and a large vehicle moving quickly may¢ qata and become more representative of the overall operation
generate the same number of pulses. This is actually a very gl o junction.

vantageous property of this type of measuring devices because i i
it enables focusing on generic rather than specific vehicles. The>€¢ond, the FCM prototypes reveal something that is not ob-
inductive loop measurements are combined with real-time re&d@us from the plot of original data, namely, that the queue
ings of traffic signal status and also the calibrated travel tim&8&nges on the “west” and “south” link are significantly larger
between each inductive loop and its corresponding stop-line. $)3n on the “east” link. The examination of the physical road
this basis, SCOOT is able to estimate the number of vehicles tifOUt reveals that the “south” and “west” links have separate
will arrive at the stop-line during the red signaling stage. This edight-turner lanes” and the corresponding inductive loops are
timate, updated in real time, is referred to as “traffic queue me3R"€ading there across two rather than just one lane. While the
surement.” Since the integration of inductive pulses is prone §§5€nce of this relationship has been captured by the FCM pro-
systematic error, there are additional inductive loops (not sho@yPes built both on original and granulated data, the granular
in Fig. 15), which are used to reset this error to zero for sonf§rsion of FCM appears to deliver more representative results
specific queue length. In effect, the SCOOT system has a builtlihthat the ratio of “south”/*east” and “west"/"east” is approxi-
“safety net” for the traffic queue measurements. By monitorifg&t€ly 2/1 for the granular prototypes and is approximately 4/1
the “discharge flows” from the stop-line during the green siz%r the point-size prototypes.
naling stage, SCOOT also accounts for the queue remainingdrhird, the granular FCM prototypes, unlike the standard ones,
from the previous signaling stage in the derived traffic queueveal that there is a significant “right-turner” traffic on the
measurements. “west” link. This is represented by a prototype that assumes pos-
In the first instance, we analyze a three-dimensional (3-Mjve values (queue increases) on the “west” link when there are
time-series of changes of traffic queues in the links “60 311gyegative values (queue decreases) on the “east” link (compare
“60 311e,” and “60 311h.” We will refer to these links as “west,the “east”-“west” plots). Notice that there is no similar effect
“east,” and “south,” respectively. Clearly, the expectation is thatused by the “right-turners” on the “south” link, which means
the relative changes of traffic queues in any pair of links will rethat the operation of the “south” link is mutually exclusive with
flect the embedded “rules of operation” of this specific junctiorfwest” and “east” links.
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Fig. 16. Time-series of changes to traffic queues on the three stop-lines.
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Fig. 17. FCM granular prototypes for the level-1 granulated data (705 data points).

Although we have demonstrated, in the previous section, thign results are poor. Fig. 20 shows the FCM prototypes build on
the time-domain granulation produces much inferior results, wime-domain granulated data. The specificity of prototypes is all
enclose here, for completeness, results obtained for such gramut-lost and while one can discern some similarity in the distri-
lated traffic data. In order to achieve comparability of the resulbaition of prototypes none of the earlier detailed analysis of the
we selectv, = 6, giving 117 granules, which compares to 114#peration of the junction seem possible. In fact, the prototypes
granules from Fig. 18. As expected, the time-domain granuldepicted on the “south”/“east” and “south”/“west” projections



110 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 1, FEBRUARY 2003

50

- —
S w0
‘ 250 -
) - m
20 T:Ll Ly
© LT
NI g
o e
20 [ alis
30 D
-40
-50
-60 -40 -20 o 20 40 60
east
40 40
—:5 —/ g —
8 30 ‘I—_ 8 30 | l'_‘
20 L 20 1 I _I_,
N RN B =] 1
T [ |
. . i TS
D
10 -10
.20 ﬂ -20
-30 :Q —_— -30 %
“*%o 40 20 ) 20 30 % 0

east’ wést

Fig. 18. FCM granular prototypes for the level-1 granulated data (114 granules).
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Fig. 19. FCM granular prototypes for the level-1 granulated data (46 granules).

indicate that it is possible to have simultaneous queue reductibims is an erroneous indication since such operation of the junc-
on the corresponding “south’—“east” and “south”—"west” linkstion would clearly lead to a collision and, as such, is specifically
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Fig. 20. FCM prototypes for the time-domain granulated traffic data€ 6 giving 117 granules).

prevented by traffic signals. Of course, time-domain granulation 1) It helps concentrate on a certain level of detail while ig-

can deliver significantly better results if narrower granulation noring (on purpose) more detailed relationships that may

windows are used. However, this defeats the idea of granulation  be pertinent only to the higher level of granularity.

and even withu, = 2 the results are not as crisply defined as 2) The form of data segments allow to emphasize the essence

those of Fig. 18. of granulation (for instance, monotonic segments of data,
The application of phase-space granulation to the traffic ~ Ssegments of equal width, etc.)

system data produces similar results to those obtained with3) It promotes a knowledge intensive, data mining-oriented

simple time-domain granulation (see Fig. 20). The FCM  approach to time-series.

prototypes build on phase-space granules are significantly les) By considering information granules, we can easily con-

specific than the prototypes obtained with state-space granules Vert the problem into a hierarchy of manageable sub-

and, as such, are not as well suited for system modeling pur- Problems. Large, less specific information granules form

poses. We conclude therefore that the state-space granulation @ first level of analysis that could be afterwards refined

based on maximization of information density has a potential to ~ PY defining more specific information granules capturing

be of benefit in many practical applications requiring efficient ~ More details and geared toward some specific analysis.
data abstraction. Formally speaking, denoting an information granule at

the higher, and more abstract level, By the more de-
tailed analysis relies on information granules, Bs, . . .,
B., such that all of them are included ih B; C A and
VII. CONCLUDING REMARKS they “cover” A in the sense that = | J;_, B;.
While the experimental part of the study concentrated on
In this paper, we have discussed a notion of granular dataultidimensional time-series, the same methodology applies
elaborated on the recursive information granulation and &s-other multidimensional data such as images. Future work
sessed the quality of summarization of information granulegll investigate whether the hierarchical granulation in the
through FCM clustering. The experiments involving both symaultidimensional space of color/brightness/texture/shape
thetic data and real-world traffic data illustrate the usefulnepsoduces image abstractions that are more closely related to
of this approach. The clustering method applied to granulauman image processing.
data gives rise to granular prototypes. These, in contrast taOverall, the granular description is very much intuitive and
numeric prototypes, are more user-oriented, reveal and deligeilitative and provides the designer/user with a general insight
a compact characterization of the main relationships existiirgo the very nature of the phenomenon manifesting through this
in the data. time-series. In this sense, this analysis concurs with a general
The granulation of time-series exhibits several essential fegenda of qualitative modeling [29] and fuzzy qualitative mod-
tures. eling [37].
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