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Abstract—This paper contributes to the conceptual and algo-
rithmic framework of information granulation. We revisit the role
of information granules that are relevant to several main classes
of technical pursuits involving temporal and spatial granulation.
A detailed algorithm of information granulation, regarded as an
optimization problem reconciling two conflicting design criteria,
namely, a specificity of information granules and their experi-
mental relevance (coverage of numeric data), is provided in the
paper. The resulting information granules are formalized in the
language of set theory (interval analysis). The uniform treatment
of data points and data intervals (sets) allows for a recursive
application of the algorithm. We assess the quality of information
granules through the application of fuzzy -means (FCM) clus-
tering algorithm. Numerical studies deal with two-dimensional
(2-D) synthetic data and experimental traffic data.

Index Terms—Complex systems, data mining-oriented time-se-
ries analysis, fuzzy sets, granular clustering, information granules
and granulation, interval analysis, perception, time-series, traffic
data.

I. INTRODUCTORYCOMMENTS

I NFORMATION granulation and information granules play
a crucial role in many areas of knowledge representation

and problem solving. Briefly speaking, we may claim that those
information granules permeate most cognitive activities of hu-
mans and help organize knowledge about the external world (or
being more precise build its perception) for the purposes of deci-
sion-making, control, system description, prediction, etc. Zadeh
[31]–[34] promoted a notion of information granulation in the
framework of fuzzy sets. Other formal and commonly exploited
environments of information granulation deal with rough sets
[23], probability, and set theory (interval analysis) [1], [9], [11],
[18], [21], [23]. In a nutshell, information granules are treated as
collections of entities (e.g., numeric readings) that are collected
together because of their similarity, functional closeness, or any
other criterion that captures a feature of indistinguishability. In-
formation granules give rise to hierarchies of cognitive entities.
Depending upon the level of details in which one is interested,
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we need information granules of different sizes (obviously, this
term requires a formal definition). It goes without saying that
information granules areconceptualconstructs not necessarily
directly implied by the needs of the physical world. In this way,
information granules feature a high level of flexibility. On the
other hand, they have to be anchored in the world of experi-
mental data to reflect in some way the reality (i.e., reflect the
physical world). To put it another way, the design of information
granules needs to take the perception and experimental evidence
into consideration. Adopting this point of view, this paper casts
the problem of information granulation in a well-defined algo-
rithmic setting. We propose a detailed algorithmic path showing
how information granules can be constructed on the basis of
the existing experimental evidence. It is also revealed how the
derived information granules can be combined even further via
fuzzy clustering.

In this paper, we are concerned with information granules and
information granulation carried out in the setting of set theory
and interval analysis. The rationale behind a selection of this
formal framework is twofold. First, interval analysis has been
around as one of the cornerstones of granular computing. As
originating from set theory, the conceptual aspects of interval
analysis are well developed. Second, the algorithmic layer of
set (interval) calculus has been mastered for a long time and
has resulted in a vast number of algorithms [11], [21], [22].
Interestingly enough, the findings reported in this paper could
be translated and applied to other frameworks of granular com-
puting, such as fuzzy sets (the conversion of the results derived
here hinges on the idea of representing fuzzy sets through their

-cuts [15], [27], [36]; that is, splitting the problem into a family
of set-based granulation tasks).

This paper is organized as follows. First, in Section II, we con-
centrate on selected areas in which information granulation and
information granules play a crucial role. Next, in Section III,
a detailed two-level algorithm for information granulation is
discussed along with a characterization of information gran-
ules in terms of their size (cardinality), specificity (width of
hyperbox projections), and an integrative measure that we call
“information density.” Summarization of information granules
and assessment of the effectiveness of granulation is performed
through fuzzy -means (FCM) clustering of granules in the aug-
mented pattern space. This issue is discussed in Section IV. A
broader perspective on alternative granulations of time-series
data is provided in Section V. These alternative granulations
are also assessed using FCM clustering. An illustrative example
concerning urban traffic data is included in Section VI. This is
followed by concluding remarks presented in Section VII.
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II. DATA GRANULATION: EXAMPLES, DEFINITIONS, AND

ALGORITHMIC ISSUES

There are a number of representative domains where infor-
mation granules can emerge as a useful vehicle to represent a
given problem and make problem solving more efficient [20],
[26], [29]. The following three areas are among the most promi-
nent applications of information granulation.

1) Granulation of Time-Series:Time-series are commonly
encountered in numerous practical problems [4]. There have
been various approaches to the description of time-series and
their classification. They are carried out in the time domain and
frequency domain. Prior to any detailed processing, time-series
are compressed in order to retain the most essential informa-
tion and suppress details that are deemed redundant from the
standpoint of further classification and processing. The essence
of granulation of time-series is to “discover” dominant com-
ponents of the series. We may perceive these components as
playing a role of basic conceptual blocks easily understood by
humans and capturing the semantics of the underlying phenom-
enon. For instance, information granules may be formed as seg-
ments of consecutive samples of the signal. Then, each segment
may be labeled according to the configuration of the samples,
e.g., rapidly increasing signal, steady signal, slowly decreasing
signal, etc. [8]. Alternatively, as we propose in this paper, one
may consider granulating the time-series value with its gradient
(and/or higher order derivatives) in individual time instances.
Note that standard sampling techniques are very specific exam-
ples of granulation of time-series (as we attempt to capture a
segment of a signal falling under a given sampling window by
a single numeric value).

2) Granulation of Digital Images:Digital images are two-
dimensional (2-D) relations. As far as understanding and pro-
cessing of images is concerned, a crux there is to identify some
higher level entities rather than being buried in a minute anal-
ysis completed at the level of individual pixels. Such tangible
and semantically sound entities are information granules. They
may arise at the level of basic homogeneous regions (in terms
of brightness, color, and texture) one can identify in an image.
These entities are inherently hierarchical; at a higher level we
may think of individual objects in the image (that are composed
of the granules arising at the lower level with more specific and
less abstract information granules). At the technical end, the
simplest and least abstract information granules are formed by
defining blocks of pixels [19], [24], [25]. At the higher
level, we are concerned with various clustering techniques that
help us construct abstractions out of the low-end (more detailed)
information granules such as the already mentioned blocks of
pixels.

3) Granulation of Spatial Structures:An array of current
modeling pursuits occurs in the realm of distributed systems
such as networks. Obvious examples of these architectures are
electric networks, water networks, or telecommunication net-
works. In spite of their evident diversity, the networks share sev-
eral profound commonalties. In particular, a hierarchical type
of modeling is omnipresent there. Instead of analyzing the en-
tire network, we split it into subnetworks (modules) that are
loosely connected and proceed with a detailed analysis at this

level. Obviously, this task is more tangible and manageable from
the computational and interpretation standpoint. Each subnet-
work is an information granule that is afterwards treated as a
conceptual and algorithmic entity. For instance, when looking
into a flow of traffic in a complex network, we partition the
network into modules (call them telecommunications granules)
and study all incoming and outgoing traffic from this perspec-
tive, refer to Fig. 1. The concept of hierarchy and information
granulation is inherently associated with geographic informa-
tion systems (GIS) where we anticipate various levels of detail
and control the process of concentrating on specific aspects by
establishing proper levels of information granularity.

III. I NFORMATION GRANULES: DESIGN AND

CHARACTERIZATION

In this section, we discuss the algorithmic layer of informa-
tion granulation by studying a way of constructing informa-
tion granules. As we have confined ourselves to a set-theoretic
formalism of information granulation, we show how to con-
struct intervals or their multidimensional versions (that is hyper-
boxes). In the discussed framework, granulation applies to nu-
meric data. The granular properties of sets are straightforward:
the larger the size of the interval, the lower its granularity. The
cardinality of a set, card(.), serves as a suitable measure of in-
formation granularity. In general, the following holds: the bigger
the cardinality of the set, the lower its granularity.

A. Building Set-Based Information Granules

In the proposed approach, information granules are designed
in two stages (phases). First, in the entire data set under anal-
ysis, we define the size of a segment (window of granulation),
specify the elements (data points) within each segment and, in
sequel, use these elements to construct a detailed form of the in-
formation granule. More formally, the granulation process can
be delineated as follows:

(1)

where
original data set;
set of disjoined time periods representing windows
of observation;
set of information granules.

The first phase is straightforward: by defining the size of the
data segment card , we embrace a
collection of data points that is of interest and need to be consid-
ered together when constructing a detailed model of the infor-
mation granule. It should be emphasized that whiledefines
a maximum cardinality of initial granules it does not prevent
formation of several smaller granules within any given window
of observation (as will be explained later). Windows of obser-
vation can be formed in many different ways (see Fig. 2). The
choice depends on the problem and reflects a way in which the
semantics of the problem is addressed. For instance, the window
can include a fixed number of samples. In some other cases, as
shown in Fig. 2(b), the window can exhibit a different level of
granularity by being formed using monotonic (increasing or de-
creasing) parts of the signal, which may be of varying length.
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Fig. 1. Concept of network granulation; we focus on structural granules by
studying a flow of traffic at the level of a selected part of the network.

Note that the formation of the window of observation is implied
by the characteristics of the problem at hand.

In the sequel, the process of constructing (and subsequent
recursive refinement) of information granules comprises two
phases:

1) derivation of information granule(s) from the original nu-
meric data contained in the window of observation;

2) recursive processing of the mixture of granular and nu-
meric data.

In the detailed construct, we start with a collection (block) of
data , as shown in Fig. 3(a). The phase-1 granu-
lation results in a mixture of granules and data points that rep-
resent local maxima of the “information density” function (de-
fined later in this section). The result of this granulation is vi-
sualized in Fig. 3(b). Subsequent recursive granulation of the
output from phase-1 produces level-2, level-3, etc., granules [as
shown in Fig. 3(c)]. For simplicity of discussion, we consider
here just scalar numeric data but we can easily generalize this
construct to a vector case by studying each coordinate of the
multidimensional data separately.

In this paper, we adopt a set theoretic framework for the de-
velopment of the granulation algorithm, thus focusing on the
“bottom-up” approach to understanding the nature of data, as
advocated in [5], [8], and [12]. In this context, one of the con-
tributions of this paper is the development of the optimization-
based granulation algorithm. The proposed algorithm does not
require specification of the number or size of information gran-
ules and it focuses fully on the character of the data itself.

Building interval-valued granules arises as a compromise be-
tween two evidently conflicting requirements.

1) The interval should “embrace” as many elements of
as possible (to be a sound representation

of the window of observation).
2) The interval should be highly specific. This translates into

the requirement of a minimal length of this interval (set).
As far as the first requirement is concerned, a cardinality of

the set covering elements of is a suitable criterion, that is

card (2)

Fig. 2. Examples of segments (windows of observation)
 : (a) of the same
granularity and (b) variable granularity induced by the monotonicity of the
signal.

Fig. 3. Illustration of the concept of recursive granulation: (a) original data,
(b) phase-1 granulated data, and (c) (phase-2, phase-3, etc.) granulated data.

where denotes the interval we are about to construct
and stands for its characteristic function, that is

if is in

otherwise.
(3)

The specificity of the interval can be directly associated with its
width

width width (4)

More precisely, the larger the width of the interval, the lower its
specificity. While this definition is straightforward, we will be
using its slightly enhanced version expressed as

width (5)

where is monotonically increasing function of the original
width and (as will become obvious soon, this
boundary condition is introduced for the sake of uniformity of
processing of data points and data intervals). For instance, a
mapping of interest can assume the form

(6)
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Bearing in mind a conflicting nature of the requirements 1) and
2) that is captured in the form

card width (7)

it is legitimate to take a ratio of these equations

card
width

(8)

and determine the intervalso that it maximizes (8). In this way,
we cope simultaneously with the two contributing optimization
problems defined in (7). We refer to the optimization expressed
by (8) as maximization of “information density” of granules.
This is to distinguish it from the concept of “data density” that
is typically represented as a ratio of cardinality of a given set
over the volume of the pattern space containing this set. Conse-
quently “data density” is not defined for a single numeric data
(zero volume in pattern space).

The choice of function depends on the preference for
large or small information granules. Fig. 4 shows contour plots
of (8) obtained with as defined by (6). It can be seen that
the decrease of the gradient of the contours with the increase
of the cardinality of the granules implies inherent preference
for smaller granules. This is an advantageous feature as it gives
us a possibility of avoiding undue influence of inherently local
optimization on the more global view of data that is obtained
through recursive application of the granulation algorithm. An
alternative choice of results in constant-gradient
contours of (8) and is thus less appropriate in the context of our
algorithm. A function results in contour plots
that are broadly similar to those obtained with ,
but it is less convenient numerically.

The above considerations generalize easily on the case of
multidimensional data. The maximization of information den-
sity, implied by (8), can be performed for multidimensional hy-
perboxes. We consider in this case a ratio of the cardinality of
the input data set contained in such hyperboxes to a function
of volume of the hyperboxes. However, such a direct approach
creates dependence of the information density measure on the
dimensionality of the pattern space. Given that in the interest
of the uniformity of processing of data points and intervals we
deliberately increase the dimensionality of the pattern space (as
explained in detail in Section IV) it is advantageous to consider
a dimensionality-invariant version of mapping . This can
be given as follows:

(9)

where , width , and
is an index of the dimension of the pattern space.

The first exponent function in (9) ensures that the specificity
of information granules is maximized through the reduction of
the maximum width of the hypercube along all dimensions in
the pattern space. The second exponent in (9) ensures that the

Fig. 4. Contour plot of the information density function (8);�(I) = const.
Transition from granule A to B represents a net decrease of information density
and is therefore avoided. Transition from A to C represents formation of a
granule with higher information density.

hyperboxes are as similar to hypercubes as possible. The above
function can be expressed in a more compact form

(10)

where , . It is clear that (10) is not affected by
the dimensionality of the pattern space. The maximization of
the width of the hyperbox (granule), over all dimensions of the
pattern space, results in a scalar value that is of the same order
regardless of the space dimension. Furthermore, the function
satisfies the original boundary condition , since for
the point-size data , .

While, in general, the pattern spacecan be any subset of
, we restrict the operation of the optimization task (8) to a

unit hypercube . Such a restriction does not imply any
loss of generality of our approach while affording clear compu-
tational benefits [with regard to mapping ].

The optimization-based granulation of data is carried out as
a one-pass simulation process:

1) normalize data to a unit hypercube;
2) initialize data structures representing cardinality and the

width of individual data items (1 and 0, respectively, for
the point-data);

3) calculate and store the value of “information density”
[as implied by (8)] of hypothetical granules formed by
any two data items in the input data set. This forms an
upper-diagonal matrix of size , where is the
cardinality of the input data set.

4) find a maximum entry in ;
5) if the maximum corresponds to an off-diagonal element

:
• merge the two information items (identified by the

th row and th column) into a single information
granule, which has width defined by the maximum
and minimum values of coordinates in each dimen-
sion from the two component granules; i.e.:

find the of each of the coordinates of the
th and th granule;
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find the of each of the coordinates of the
th and th granule;

modify the th granule so that its size is
defined by - and -values identified
above;

• update the cardinality of the resulting granule to
the sum of the cardinality counts of the component
granules;

• update theth row and column of with the infor-
mation pertinent to the newly formed information
granule and remove theth row and column from

; i.e.:
copy rows 1 to from matrix to matrix

;
copy rows to size from matrix as
rows to size in matrix ;
copy columns 1 to from matrix to
matrix ;
copy columns to size from matrix

as columns to size in matrix ;
overwrite matrix with matrix ;

• return to d).
6) If the maximum corresponds to a diagonal element

:
• copy the granule to an output list and remove the

corresponding row and column from matrix; i.e.:
copy rows 1 to from matrix to matrix

;
copy rows to size from matrix as
rows to size in matrix ;
copy columns 1 to from matrix to
matrix ;
copy columns to size from matrix

as columns to size in matrix ;
overwrite matrix with matrix ;

• if the size of matrix is greater than 1, return to d),
otherwise terminate.

Computational complexity of this granulation algorithm is
owing to the computations of matrix in step c). How-

ever, unlike the clustering techniques (such as FCM), the granu-
lation process has an inherently local character and can be easily
applied to a partitioned input data thus circumventing the high
computational cost associated with large data sets. It is worth
pointing out that the size of matrix is being reduced by one
row and column in each iteration thus the number of iterative
steps equals .

The above algorithm is somewhat similar to “subtractive
clustering” proposed by Chiu [5] in that the algorithm avoids
any arbitrary partition of the input space and is driven purely
by the existing input data. In contrast to grid-based methods,
areas of input space that do not have data are simply ignored
by the two algorithms. Both our algorithm and “subtractive
clustering” avoid combinatorial explosion of relationships
with the increasing dimension of the input space. Since the
algorithms maintain linear computational complexity with
respect to the input space dimension (not to be confused with
the complexity with respect to the cardinality of the data set

which is ), they are particularly suitable for processing
multidimensional data. Another common characteristics of the
two algorithms is that they maintain a localized view of data. As
the granulation proceeds, the identified clusters do not exercise
further influence on data points that remain after their removal.

However, there is a significant difference between the two al-
gorithms. In our algorithm we do not make any assumptions
about the maximum size of granules. Granules are allowed to
grow as long as their local data density keeps increasing. Fur-
thermore, we do not make any arbitrary decision about the sep-
aration of cluster centers. The formation of closely separated
granules is largely avoided by the very nature of maximiza-
tion of information density, which tends to increase the size
of granule if it means adding sufficiently large number of data
items (another granule) without undue increase of its volume.
If, on the other hand, the increase in volume would imply the
reduction of information density, the granule does not expand
and remains well separated from the neighboring granules. An-
other distinguishing feature of our algorithm is that it allows
processing both point-size and hyperbox data. This is an impor-
tant characteristic that allows hierarchical granulation of data.
It should be noted that hierarchical granulation enables over-
coming the limitations of the “local view” of data while sup-
porting the application of the algorithm to a partitioned input
data set.

It is also instructive to point out an important difference be-
tween the hierarchical clustering and the hierarchical granula-
tion proposed here. In hierarchical clustering, the similarity or
proximity measure is evaluated for all data in the unpartitioned
pattern space. This renders hierarchical clustering computation-
ally expensive at the early clustering stages. By contrast, hierar-
chical granulation can operate on the partitioned pattern space
(thus achieving significant computational gains because of the
quadratic computational complexity of the algorithm with re-
spect to the cardinality of the data set) and the subsequent ap-
plication of the algorithm to the partially granulated patterns en-
ables arriving at the globally optimal granulation.

The granulation algorithm introduced here is developed
against a background of some recent developments in this area.
In particular, it complements the fuzzy granulation approaches
proposed in [2], [12], and [30]. We demonstrate that crisp
granulation followed by fuzzy clustering offers a powerful
framework for deriving data abstractions, but further study will
be undertaken to investigate the relative merits of generalizing
our algorithm to its fuzzy variant.

To illustrate the operation of the granulation algorithm, we
consider here a synthetic 2-D time-series, as presented in Fig. 5.

The granulation algorithm is then applied to data from
Fig. 5(b). Apart from identifying the granules themselves, we
monitor the value of information density index throughout
the granulation process. Of course, the information density
of granules identified toward the end of the process is lower
then the information density of the early granules. This is
because the removal of “high information density” granules
leaves effective voids in the pattern space. We can utilize this
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Fig. 5. Synthetic 2-D time-series: (a) time plot and (b) state plot.

indicator in two ways. We can either terminate the granulation
process when the information density of granules reaches a
prespecified threshold level (which effectively discards some
data), or we can perform a “higher level” granulation on the
identified granules (which merges granules from the previous
level). Here, we adopt the latter approach.

The operation of the granulation algorithm, over three
hierarchical levels of granulation, is illustrated in Fig. 6. The
“level-1” granulation compresses the original set of 230 data
points into 27 granules. These granules are presented as input
data to “level-2” granulation, which results in nine granules.
“Level-3” granulation reduces this number further to six
granules. It is self-evident that the hierarchy of granules forms
an abstraction that preserves the essential characteristics of the
original data (that of four relationships in the pattern space).
Of even greater importance, the granulation has balanced the
relative count of data items in large and small data groupings,
thus helping smaller data groups to be “noticed” in subsequent
processing (clustering).

It is worth noting that the number of granulation levels does
not need to be defined in advance. The hierarchical granulation
is simply carried out until the number of granules identified at
the subsequent granulation levels does not change. Of course, in
any practical application, the maximum size of granules is fre-
quently predefined so that the granules map conveniently onto
some linguistic entities. In this case, the relative weighing of the
two components in (8) can be adjusted so as to achieve the re-
quired granularity.

IV. A SSESSMENT ANDINTERPRETATION OFINFORMATION

GRANULES THROUGH FUZZY CLUSTERING

The recursive application of the granulation algorithm dis-
cussed in the previous section, condensed the data quite signif-
icantly. What is of fundamental interest, however, is whether
this “condensing” sharpens the view of the essential character-
istics of data. We assess here the quality of granulation by iden-
tifying a limited number of representatives of both the original
numeric data and the constructed information granules. This is
accomplished by clustering and identifying prototypes (repre-
sentatives) of the granules [10]. In particular, a fuzzy clustering
method, a well-known FCM algorithm [3], [13], is of interest
here. As a result of this clustering mechanism, the method re-
turns a partition matrix. This matrix captures all granules in the
form of some generalized architecture of fuzzy sets formed over
the family of the original information granules.

Note that in contrast to the “standard” clustering method, we
are concerned with a collection of hypercubes—sets in(see
Fig. 7). As in any clustering pursuit, our objective is to reveal a
structure in a set of these granular data. As a consequence of the
granular nature of the data set, we anticipate that the prototypes
returned by the FCM are also information granules.

Owing to the granular nature of the data to be clustered, they
need to be represented (encoded) in such a way that their aspect
of granularity can be properly captured by the FCM method. A
parametric method of processing heterogeneous data is a sound
solution to this problem. Within this scope, several directions
could be sought (see Fig. 7).
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Fig. 6. Illustration of the operation of the granulation algorithm applied to synthetic 2-D time-series: (a) represents the “first-level” granulation, (b) represents
the “second-level” granulation, and (c) represents the “third-level” granulation.

1) The lower and upper bound of each coordinate (feature)
of the information granule (we refer to it as abound en-
coding) can be represented. Thus, for the-dimensional
information granule, we end up with a -dimensional
space of objects to be clustered

2) Each coordinate can be represented by a center point of
the granule and its width (center-width encoding). Again,
this form of representation gives rise to the-dimen-
sional space

This representation is suitable if we have an interval that
is distributed symmetrically around the center. Otherwise,

one has to incorporate the lower and upper width. In this
case, such representation implies a higher dimensionality
of the space in which the clustering takes place.

The topological implications of increasing the dimensionality
of the pattern space in the above two representations can be
appreciated by analyzing a single dimension of a granule. We
consider here three intervals (, , and ) and a point

, as shown at the top of Fig. 8.
The bounds-encoding method generates points inthat

have their first coordinate representing the lower bound
of the interval, and the second coordinate representing
the upper bound of the interval. It is clear that all points in,
map onto points along the line in and all inter-
vals in map onto points in a half-space :

. What has been achieved therefore is that
a heterogeneous mix of intervals and points inhas been con-
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Fig. 7. Information granules to be clustered and their representation. (a) Bound
representation. (b) Center-width(m-�) representation.

Fig. 8. Mapping of three intervals and a point inR toR space using bounds-
and center-width encoding.

verted into a homogeneous set of points in; (to be precise we
are only concerned with the unit interval [0, 1] and a unit box
[0, 1] [0, 1]). An interesting feature of the bounds-encoding
mapping is that the occurrence of inclusion/overlap of intervals
is easily detected in the mapped image in. The symmetrical
reflection of the mapped intervals with respect to the diagonal
line gives rise to a “box” (as illustrated in Fig. 8) for
each interval. The boxes for disjoint intervals are disjoint and
the boxes for overlapping intervals overlap as well.

The center-width mapping also achieves a conversion of het-
erogeneous mix of intervals and points in , into a homoge-
neous set of points in . However, the topological property
of interval overlap is more difficult to identify in the mapped
image. This is because the character of the two component di-
mensions is quite different. One dimension represents a value
of data and the other dimension represents a relative variation
from this value.

Bearing this in mind, we adopt in our subsequent study the
bounds-encoding method so that we can maintain topological
interpretability of the mapped points and intervals. It should be
pointed out that, in general, we will concern ourselves with map-
ping from to (or more precisely from [0, 1] to [0,
1] ).

Having achieved a homogeneous representation of input data,
the application of standard FCM clustering [3] returns a parti-
tion matrix and a collection of cluster prototypes. These proto-
types are of the same dimensionality as the input data; therefore,
they can be interpreted in the original data space as hyperboxes.
In particular, the prototypes represent now fuzzy decomposable
relations in the feature space [27], [34], [35], in addition to rep-
resenting, through the partition matrix, the fuzzy membership
of data in clusters. The combination of the two aspects delivers
a more comprehensive insight into the granular nature of infor-
mation being summarized by the prototypes.

To illustrate the clustering of information granules, we con-
tinue with the example given in the previous section. The FCM
algorithm is deployed first on the original data (to provide a base
reference) and then on the granulated data. The number of clus-
ters is kept constant , so that the issue of size and posi-
tioning of prototypes is brought into sharper focus. The results
are shown in Fig. 9 and Table I.

As expected, the granular input data gives rise to granular
prototypes. The size of the prototypes affords a good appreci-
ation of the spatial dimensions of the original data groupings.
This is in contrast to the standard result [see Fig. 9(a)] where
the prototypes are point-size and, in themselves, do not convey
this information. Although the FCM partition matrix contains
information that represents the area of influence of individual
clusters its direct interpretation is quite difficult due to the com-
plex topology of the contour plots of the partition matrix. In this
sense, clustering of granular data affords a better insight into the
nature of data.

Another important observation that can be made from the
above results is that the information granulation helps to over-
come the well-known bias of the FCM algorithm, that of under-
representing smaller groupings of data. Since the granulation re-
duces the number of information items in the high data density
areas, the relative count of granules in large and smaller group-
ings of data evens out. In other words, granulation substitutes
explicit enumeration (that unduly affects FCM) with an update
of the cardinality attribute associated with individual granules
(that is transparent to FCM). It can be seen that the clustering
of level-2 and level-3 granulated data [see Fig. 9(c) and (d)]
does not have any problems associating prototypes with the two
smaller data groupings. This is a significant result that illustrates
how data granulation complements fuzzy clustering.

V. GRANULAR TIME SERIES

The concept of information granulation opens up a new av-
enue of signal processing both in terms of signal representa-
tion and modeling relationships between the granular entities.
In this section, we look at two possible approaches to capturing
the dynamics of time-series and compare it to the granulation
approach described in the previous sections.
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Fig. 9. Clustering of granular data performed using FCM. (a) Reference case of clustering the original 230 data points (the size of prototypes has beenexaggerated
for the sake of the clarity). (b) Clustering of level-1 granulated data (27 granules). (c) Clustering of level-2 granulated data (nine granules). (d)Clustering of level-3
granulated data (six granules).

TABLE I
COORDINATES OFFCM PROTOTYPES ASILLUSTRATED IN FIG. 9

A. Time-Domain Granulation

The state-space granulation (and subsequent clustering) de-
scribed in the previous two sections is now compared to the di-
rect approach in which the information granules are formed by
predefined sets of consecutive elements of the time-series. This
approach is referred to astime-domain granulation. The sim-
plest strategy within this approach is to define a “window of
observation” and to evaluate an appropriate granular represen-
tative within such a segment of time-series. Fig. 10 illustrates
the principle of this approach.

Bearing in mind our earlier comments on the bounds-en-
coding of information granules, we can formalize the
time-domain granulation as a mapping of the original
data set onto a set of intervals

where is a number of elements in the
time-series and is the number of granules.

Individual granules are described as follows:

(11)
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Fig. 10. Simple time-domain granulation: (a) time-series and (b) information granules formed with! = 3.

where

(12)

and , , is a granulation window.
Equations (11) and (12) are easily generalized to multidimen-
sional time-series by applying the - and -operations to
all coordinates of the original data, in which case we have

(13)

It is clear that the mapping of onto involves the increase
of dimensionality of the pattern space from to , where
is a dimension of patterns. The set of intervalsnow represents
a granulated information from the original time-series. As such,
the intervals can be used to extract specific knowledge about
the system at the higher level of abstraction compared to the one
afforded with the original time-series. In order to check the ef-
fectiveness of knowledge abstraction based on the information
granules (13), we apply the time-domain granulation to the syn-
thetic data of Fig. 5. To make a fair comparison of our algorithm
with time-domain granulation, we select to be 8, 25, and 3,
8 so as to ensure that the granulation returns 27, nine, and six
granules, respectively. However, we start first with granulation
windows equal 2, 3, 5, and 6, which imply formation of 115,
76, 46, and 38 granules, respectively. Results of the granulation
and subsequent FCM clustering (four clusters) are presented in
Fig. 11.

One fact that is immediately obvious from these results is
that time-domain granulation is very sensitive to the selection
of . If the window of observation is aligned well with the
boundaries of significant changes in the time-series, as is the
case for and , the resulting granulation gives
a good abstraction of the original data and the FCM clustering
identifies prototypes that represent the data well. However, in
a more typical case, when the window of observation includes
data that belongs to two different data groupings, the time-do-
main granulation generates large, unrepresentative granules that
adversely affect subsequent FCM clustering. Such performance
is, in fact, to be expected since the transition of the time-se-
ries from one data grouping to another represents a high-fre-
quency signal that is not matched by the sampling frequency
of the granulation window (as defined by the inverse of the
window’s width). Therefore, the result is an irretrievable loss

of information (Shannon theorem, [24], [25]) that demonstrates
itself here through large, low-specificity information granules.
The FCM prototypes that are build on such granules also have
low specificity and they occupy most of the pattern space [see
Fig. 11(d)–(f)]. We conclude, therefore, that a simple time-do-
main granulation should be avoided if there is no additional in-
formation available concerning the appropriateness of width of
the specific granulation window.

A refinement of the simple time-series granulation approach
has been proposed by Daset al. [8]. The extended method con-
siders fixed-length subsequences of the series rather than just
individual data items (see Fig. 12). The subsequences are rep-
resented as data points in the augmented input space that has
dimension defined by the length of the subsequences. Sub-
sequences that have similar “shape” are represented as nearby
points in the augmented space and can be clustered using some
appropriately defined distance function. However, because the
property of shape similarity should be independent from the ac-
tual values of time-series, the subsequences need to be normal-
ized to a fixed range (typically [0, 1]) before they are clustered.
It is worth noting that every change of the width of the granula-
tion window implies the need for a renormalization of the
subsequences. The clustering process can be seen as a forma-
tion of a “vocabulary” (codebook) of information granules that
are viewed as conceptual entities aimed at capturing the original
numeric signal [28].

Clearly, the approach generalizes to multidimensional time-
series. In this case, the subsequencesare formed by patterns

, where is a dimension of individual patterns. They
are therefore elements of -dimensional space, where
is a number of patterns formed from sequences in each di-
mension (typically for ). The clusters of subse-
quences are therefore hyperboxes in . Unfortunately, the
exponential increase of the dimensionality of the “shape-space”
makes this impractical.

B. Phase-Space Granulation

In this paper, we have adopted an alternative approach to
capturing the nature of subsequences of time-series that avoids
undue augmentation of the input space. We characterize the
“shape” of subsequences by a range of gradient angles between
the first and every other pattern in the subsequence (in Fig. 13).
This results in an interval (hyperbox) description of “shape” that
is fully compatible with the interval (hyperbox) description of
the time-series values, as defined in (11)–(13). The advantage
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Fig. 11. Results of time-domain granulation and FCM clustering: (a)! = 2 (115 granules), (b)! = 3 (76 granules), (c)! = 5 (46 granules), (d)! = 6
(38 granules), (e)! = 8 (28 granules), and (f)! = 25 (nine granules).

Fig. 12. Granulation of time-seriesx 2 R (i = 1; 2; . . . ; N) into fixed-length subsequencesq 2 R (j = 1; 2; . . . ; N�! +1);! = 3;! = 4.
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Fig. 13. Phase-space granulation: (a) intervals of time-series values and (b) intervals of gradient angles (granulation window! = 3; see Fig. 10).

Fig. 14. Phase-space granulation and FCM clustering: (a)! = 6 (38 granules) and (b)! = 8 (28 granules).

of this granulation is that subsequent clustering does not imply
any further increase of the input space dimension.

Since the intervals of time-series values in each granulation
window are already contained within the [0, 1] range, only
the intervals of gradient angles need to be normalized from

to [0, 1].
We can formalize the phase-space granulation as a mapping

of the original data set onto a set of
hyperboxes where is a number of
elements in the time-series andis the number of granules. A
hyperbox is formed as a Cartesian product of two intervals;

, where is an interval of time-series values
and is an interval of gradient angles in theth granulation
window

(14)

(15)

where is an angle-valued gradient function and
is a normalization function. The granulation window is de-
fined as in (12) and the generalization of the granulation to a
multidimensional time-series is analogous to (13). In this gen-
eral case, the dimension of the input space is(where is a di-
mension of ) and the subsequent clustering of hyperboxes
does not imply any further increase of the dimension of the pat-
tern space . It is worth emphasizing that increasing
the width of the granulation window reduces the number of

granules to while maintaining the dimensionality of the
input space. Consequently, the computational complexity of the
subsequent FCM is reduced by a factor . This is in a sharp
contrast to the granulation proposed in [8], where the increase
of the width of the granulation window reduces the number of
input patterns to - , but it increases the dimensionality of the
input space by a factor , thus increasing the computational
complexity of FCM also by a factor .

Tests performed on the synthetic time-series data indicate that
while the inclusion of the gradient of the time-series goes some
way toward filtering out unrepresentative granules, the FCM
clustering of phase-space granulated data is broadly comparable
to the results obtained with simple time-domain granulation.
Fig. 14 provides an illustration of granulation and FCM clus-
tering obtained for and . Results illustrated in
Fig. 14(a) are an improvement on the results from Fig. 11(d) but
there is very little (if any) improvement discernible in Fig. 14(b)
compared to Fig. 11(e).

VI. NUMERICAL STUDIES

In this section, we apply granular analysis to a time-series
of traffic queues collected by an urban traffic control (UTC)
system. The data represents traffic on a crossroad in Mansfield
(Nottinghamshire, U.K.) during a morning rush hour. The
topology of the selected crossroad is illustrated in Fig. 15.
The junction is controlled by an adaptive system called the
split-cycle-offset optimization technique (SCOOT), that at-
tempts to maximize the traffic throughput of the junction by
adaptively modifying the duration of the red/green signaling
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Fig. 15. Junction with three measured traffic flows (in Mansfield, U.K.).

stages. However, the details of SCOOT heuristics that imple-
ment the traffic signals optimization are not readily available
since the system is a commercial product. This is unfortu-
nate because the development of various high-level traffic
management tasks such as in-car traffic information, variable
message signs, and public transport information (all of which
require predictions of traffic flows over extended time-scales)
is critically tied to the SCOOT system itself [7], [17]. We shall
show here that, by performing granular analysis of traffic data,
it is possible to infer operational control rules that can provide
a basis for the development of high-level traffic management
tasks while, at the same time, leaving SCOOT fully in charge
of detailed optimization of traffic signals.

While the full Mansfield SCOOT system involves some 40
intersections, for the sake of clarity of presentation, we limit
ourselves to just one intersection, as illustrated in Fig. 15. The
three inductive loops are the measuring devices that count dis-
crete pulses generated by cars passing over them. The number
of pulses generated by a car is proportional to the length of the
car and inversely proportional to its speed. Therefore, a small
vehicle moving slowly and a large vehicle moving quickly may
generate the same number of pulses. This is actually a very ad-
vantageous property of this type of measuring devices because
it enables focusing on generic rather than specific vehicles. The
inductive loop measurements are combined with real-time read-
ings of traffic signal status and also the calibrated travel times
between each inductive loop and its corresponding stop-line. On
this basis, SCOOT is able to estimate the number of vehicles that
will arrive at the stop-line during the red signaling stage. This es-
timate, updated in real time, is referred to as “traffic queue mea-
surement.” Since the integration of inductive pulses is prone to
systematic error, there are additional inductive loops (not shown
in Fig. 15), which are used to reset this error to zero for some
specific queue length. In effect, the SCOOT system has a built-in
“safety net” for the traffic queue measurements. By monitoring
the “discharge flows” from the stop-line during the green sig-
naling stage, SCOOT also accounts for the queue remaining
from the previous signaling stage in the derived traffic queue
measurements.

In the first instance, we analyze a three-dimensional (3-D)
time-series of changes of traffic queues in the links “60 311g,”
“60 311e,” and “60 311h.” We will refer to these links as “west,”
“east,” and “south,” respectively. Clearly, the expectation is that
the relative changes of traffic queues in any pair of links will re-
flect the embedded “rules of operation” of this specific junction.

The original time-series are presented in Fig. 16. They con-
sist of 705 discrete measurements for each inductive loop. The
readings are time-aligned and form a 3-D vector of system states
for 705 time instances. In order to achieve consistent representa-
tion of data points and intervals, we increase the dimensionality
of the pattern space from three to six (as illustrated in Fig. 8).
We apply the granulation and clustering to this six-dimensional
state vector and visualize the results by three 2-D projections.
It is worth mentioning that while the granulation and clustering
operates on data that is normalized to a unit hypercube ([0, 1]),
the results are converted back to the original data values.

Figs. 17–19 reveal some interesting properties of the system.
First, the plot of the original data and FCM prototypes (see
Fig. 17) is somewhat surprising in that significant relationships
between traffic in various directions appear not to be fully repre-
sented by the prototypes. This is because the data grouped along
the axes (“west” 0, “east” 0, and “south” 0) exerts undue
influence on the FCM algorithm. The situation changes quite
dramatically when we consider granulated data (see Figs. 18
and 19). In this case, the prototypes cover a larger proportion
of data and become more representative of the overall operation
of the junction.

Second, the FCM prototypes reveal something that is not ob-
vious from the plot of original data, namely, that the queue
changes on the “west” and “south” link are significantly larger
than on the “east” link. The examination of the physical road
layout reveals that the “south” and “west” links have separate
“right-turner lanes” and the corresponding inductive loops are
spreading there across two rather than just one lane. While the
essence of this relationship has been captured by the FCM pro-
totypes built both on original and granulated data, the granular
version of FCM appears to deliver more representative results
in that the ratio of “south”/“east” and “west”/“east” is approxi-
mately 2/1 for the granular prototypes and is approximately 4/1
for the point-size prototypes.

Third, the granular FCM prototypes, unlike the standard ones,
reveal that there is a significant “right-turner” traffic on the
“west” link. This is represented by a prototype that assumes pos-
itive values (queue increases) on the “west” link when there are
negative values (queue decreases) on the “east” link (compare
the “east”–“west” plots). Notice that there is no similar effect
caused by the “right-turners” on the “south” link, which means
that the operation of the “south” link is mutually exclusive with
“west” and “east” links.
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Fig. 16. Time-series of changes to traffic queues on the three stop-lines.

Fig. 17. FCM granular prototypes for the level-1 granulated data (705 data points).

Although we have demonstrated, in the previous section, that
the time-domain granulation produces much inferior results, we
enclose here, for completeness, results obtained for such granu-
lated traffic data. In order to achieve comparability of the results
we select , giving 117 granules, which compares to 114
granules from Fig. 18. As expected, the time-domain granula-

tion results are poor. Fig. 20 shows the FCM prototypes build on
time-domain granulated data. The specificity of prototypes is all
but lost and while one can discern some similarity in the distri-
bution of prototypes none of the earlier detailed analysis of the
operation of the junction seem possible. In fact, the prototypes
depicted on the “south”/“east” and “south”/“west” projections
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Fig. 18. FCM granular prototypes for the level-1 granulated data (114 granules).

Fig. 19. FCM granular prototypes for the level-1 granulated data (46 granules).

indicate that it is possible to have simultaneous queue reduction
on the corresponding “south”–“east” and “south”–“west” links.

This is an erroneous indication since such operation of the junc-
tion would clearly lead to a collision and, as such, is specifically
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Fig. 20. FCM prototypes for the time-domain granulated traffic data (! = 6 giving 117 granules).

prevented by traffic signals. Of course, time-domain granulation
can deliver significantly better results if narrower granulation
windows are used. However, this defeats the idea of granulation
and even with the results are not as crisply defined as
those of Fig. 18.

The application of phase-space granulation to the traffic
system data produces similar results to those obtained with
simple time-domain granulation (see Fig. 20). The FCM
prototypes build on phase-space granules are significantly less
specific than the prototypes obtained with state-space granules
and, as such, are not as well suited for system modeling pur-
poses. We conclude therefore that the state-space granulation
based on maximization of information density has a potential to
be of benefit in many practical applications requiring efficient
data abstraction.

VII. CONCLUDING REMARKS

In this paper, we have discussed a notion of granular data,
elaborated on the recursive information granulation and as-
sessed the quality of summarization of information granules
through FCM clustering. The experiments involving both syn-
thetic data and real-world traffic data illustrate the usefulness
of this approach. The clustering method applied to granular
data gives rise to granular prototypes. These, in contrast to
numeric prototypes, are more user-oriented, reveal and deliver
a compact characterization of the main relationships existing
in the data.

The granulation of time-series exhibits several essential fea-
tures.

1) It helps concentrate on a certain level of detail while ig-
noring (on purpose) more detailed relationships that may
be pertinent only to the higher level of granularity.

2) The form of data segments allow to emphasize the essence
of granulation (for instance, monotonic segments of data,
segments of equal width, etc.)

3) It promotes a knowledge intensive, data mining-oriented
approach to time-series.

4) By considering information granules, we can easily con-
vert the problem into a hierarchy of manageable sub-
problems. Large, less specific information granules form
a first level of analysis that could be afterwards refined
by defining more specific information granules capturing
more details and geared toward some specific analysis.
Formally speaking, denoting an information granule at
the higher, and more abstract level, by, the more de-
tailed analysis relies on information granules, ,

, such that all of them are included in, and
they “cover” in the sense that .

While the experimental part of the study concentrated on
multidimensional time-series, the same methodology applies
to other multidimensional data such as images. Future work
will investigate whether the hierarchical granulation in the
multidimensional space of color/brightness/texture/shape
produces image abstractions that are more closely related to
human image processing.

Overall, the granular description is very much intuitive and
qualitative and provides the designer/user with a general insight
into the very nature of the phenomenon manifesting through this
time-series. In this sense, this analysis concurs with a general
agenda of qualitative modeling [29] and fuzzy qualitative mod-
eling [37].
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